Jana Trifinopoulos, Julia List, Thorsten Klampfl, Klara Klein, Michaela Prchal-Murphy, Agnieszka Witalisz-Siepracka, Florian Bellutti, Luca L Fava, Gerwin Heller, Sarah Stummer, Patricia Testori, Monique L Den Boer, Judith M Boer, Sonja Marinovic, Gregor Hoermann, Wencke Walter, Andreas Villunger, Piotr Sicinski, Veronika Sexl, Dagmar Gotthardt
{"title":"Cyclin C promotes development and progression of B-cell acute lymphoblastic leukemia by counteracting p53-mediated stress responses.","authors":"Jana Trifinopoulos, Julia List, Thorsten Klampfl, Klara Klein, Michaela Prchal-Murphy, Agnieszka Witalisz-Siepracka, Florian Bellutti, Luca L Fava, Gerwin Heller, Sarah Stummer, Patricia Testori, Monique L Den Boer, Judith M Boer, Sonja Marinovic, Gregor Hoermann, Wencke Walter, Andreas Villunger, Piotr Sicinski, Veronika Sexl, Dagmar Gotthardt","doi":"10.3324/haematol.2024.285701","DOIUrl":null,"url":null,"abstract":"<p><p>Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C as a key factor for B-ALL development and maintenance. While cyclin C is non-essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1+ B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1+ cells resulting in the incapability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2024.285701","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C as a key factor for B-ALL development and maintenance. While cyclin C is non-essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1+ B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1+ cells resulting in the incapability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.
期刊介绍:
Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research.
Scope:
The scope of the journal includes reporting novel research results that:
Have a significant impact on understanding normal hematology or the development of hematological diseases.
Are likely to bring important changes to the diagnosis or treatment of hematological diseases.