{"title":"Swimtrans Net: a multimodal robotic system for swimming action recognition driven via Swin-Transformer.","authors":"He Chen, Xiaoyu Yue","doi":"10.3389/fnbot.2024.1452019","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Currently, using machine learning methods for precise analysis and improvement of swimming techniques holds significant research value and application prospects. The existing machine learning methods have improved the accuracy of action recognition to some extent. However, they still face several challenges such as insufficient data feature extraction, limited model generalization ability, and poor real-time performance.</p><p><strong>Methods: </strong>To address these issues, this paper proposes an innovative approach called Swimtrans Net: A multimodal robotic system for swimming action recognition driven via Swin-Transformer. By leveraging the powerful visual data feature extraction capabilities of Swin-Transformer, Swimtrans Net effectively extracts swimming image information. Additionally, to meet the requirements of multimodal tasks, we integrate the CLIP model into the system. Swin-Transformer serves as the image encoder for CLIP, and through fine-tuning the CLIP model, it becomes capable of understanding and interpreting swimming action data, learning relevant features and patterns associated with swimming. Finally, we introduce transfer learning for pre-training to reduce training time and lower computational resources, thereby providing real-time feedback to swimmers.</p><p><strong>Results and discussion: </strong>Experimental results show that Swimtrans Net has achieved a 2.94% improvement over the current state-of-the-art methods in swimming motion analysis and prediction, making significant progress. This study introduces an innovative machine learning method that can help coaches and swimmers better understand and improve swimming techniques, ultimately improving swimming performance.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1452019"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1452019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Currently, using machine learning methods for precise analysis and improvement of swimming techniques holds significant research value and application prospects. The existing machine learning methods have improved the accuracy of action recognition to some extent. However, they still face several challenges such as insufficient data feature extraction, limited model generalization ability, and poor real-time performance.
Methods: To address these issues, this paper proposes an innovative approach called Swimtrans Net: A multimodal robotic system for swimming action recognition driven via Swin-Transformer. By leveraging the powerful visual data feature extraction capabilities of Swin-Transformer, Swimtrans Net effectively extracts swimming image information. Additionally, to meet the requirements of multimodal tasks, we integrate the CLIP model into the system. Swin-Transformer serves as the image encoder for CLIP, and through fine-tuning the CLIP model, it becomes capable of understanding and interpreting swimming action data, learning relevant features and patterns associated with swimming. Finally, we introduce transfer learning for pre-training to reduce training time and lower computational resources, thereby providing real-time feedback to swimmers.
Results and discussion: Experimental results show that Swimtrans Net has achieved a 2.94% improvement over the current state-of-the-art methods in swimming motion analysis and prediction, making significant progress. This study introduces an innovative machine learning method that can help coaches and swimmers better understand and improve swimming techniques, ultimately improving swimming performance.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.