{"title":"MLFGCN: short-term residential load forecasting via graph attention temporal convolution network.","authors":"Ding Feng, Dengao Li, Yu Zhou, Wei Wang","doi":"10.3389/fnbot.2024.1461403","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Residential load forecasting is a challenging task due to the random fluctuations caused by complex correlations and individual differences. The existing short-term load forecasting models usually introduce external influencing factors such as climate and date. However, these additional information not only bring computational burden to the model, but also have uncertainty. To address these issues, we propose a novel multi-level feature fusion model based on graph attention temporal convolutional network (MLFGCN) for short-term residential load forecasting.</p><p><strong>Methods: </strong>The proposed MLFGCN model fully considers the potential long-term dependencies in a single load series and the correlations between multiple load series, and does not require any additional information to be added. Temporal convolutional network (TCN) with gating mechanism is introduced to learn potential long-term dependencies in the original load series. In addition, we design two graph attentive convolutional modules to capture potential multi-level dependencies in load data. Finally, the outputs of each module are fused through an information fusion layer to obtain the highly accurate forecasting results.</p><p><strong>Results: </strong>We conduct validation experiments on two real-world datasets. The results show that the proposed MLFGCN model achieves 0.25, 7.58% and 0.50 for MAE, MAPE and RMSE, respectively. These values are significantly better than those of baseline models.</p><p><strong>Discussion: </strong>The MLFGCN algorithm proposed in this paper can significantly improve the accuracy of short-term residential load forecasting. This is achieved through high-quality feature reconstruction, comprehensive information graph construction and spatiotemporal features capture.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1461403"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1461403","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Residential load forecasting is a challenging task due to the random fluctuations caused by complex correlations and individual differences. The existing short-term load forecasting models usually introduce external influencing factors such as climate and date. However, these additional information not only bring computational burden to the model, but also have uncertainty. To address these issues, we propose a novel multi-level feature fusion model based on graph attention temporal convolutional network (MLFGCN) for short-term residential load forecasting.
Methods: The proposed MLFGCN model fully considers the potential long-term dependencies in a single load series and the correlations between multiple load series, and does not require any additional information to be added. Temporal convolutional network (TCN) with gating mechanism is introduced to learn potential long-term dependencies in the original load series. In addition, we design two graph attentive convolutional modules to capture potential multi-level dependencies in load data. Finally, the outputs of each module are fused through an information fusion layer to obtain the highly accurate forecasting results.
Results: We conduct validation experiments on two real-world datasets. The results show that the proposed MLFGCN model achieves 0.25, 7.58% and 0.50 for MAE, MAPE and RMSE, respectively. These values are significantly better than those of baseline models.
Discussion: The MLFGCN algorithm proposed in this paper can significantly improve the accuracy of short-term residential load forecasting. This is achieved through high-quality feature reconstruction, comprehensive information graph construction and spatiotemporal features capture.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.