{"title":"Dynamical predictive coding with reservoir computing performs noise-robust multi-sensory speech recognition.","authors":"Yoshihiro Yonemura, Yuichi Katori","doi":"10.3389/fncom.2024.1464603","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-sensory integration is a perceptual process through which the brain synthesizes a unified perception by integrating inputs from multiple sensory modalities. A key issue is understanding how the brain performs multi-sensory integrations using a common neural basis in the cortex. A cortical model based on reservoir computing has been proposed to elucidate the role of recurrent connectivity among cortical neurons in this process. Reservoir computing is well-suited for time series processing, such as speech recognition. This inquiry focuses on extending a reservoir computing-based cortical model to encompass multi-sensory integration within the cortex. This research introduces a dynamical model of multi-sensory speech recognition, leveraging predictive coding combined with reservoir computing. Predictive coding offers a framework for the hierarchical structure of the cortex. The model integrates reliability weighting, derived from the computational theory of multi-sensory integration, to adapt to multi-sensory time series processing. The model addresses a multi-sensory speech recognition task, necessitating the management of complex time series. We observed that the reservoir effectively recognizes speech by extracting time-contextual information and weighting sensory inputs according to sensory noise. These findings indicate that the dynamic properties of recurrent networks are applicable to multi-sensory time series processing, positioning reservoir computing as a suitable model for multi-sensory integration.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1464603","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-sensory integration is a perceptual process through which the brain synthesizes a unified perception by integrating inputs from multiple sensory modalities. A key issue is understanding how the brain performs multi-sensory integrations using a common neural basis in the cortex. A cortical model based on reservoir computing has been proposed to elucidate the role of recurrent connectivity among cortical neurons in this process. Reservoir computing is well-suited for time series processing, such as speech recognition. This inquiry focuses on extending a reservoir computing-based cortical model to encompass multi-sensory integration within the cortex. This research introduces a dynamical model of multi-sensory speech recognition, leveraging predictive coding combined with reservoir computing. Predictive coding offers a framework for the hierarchical structure of the cortex. The model integrates reliability weighting, derived from the computational theory of multi-sensory integration, to adapt to multi-sensory time series processing. The model addresses a multi-sensory speech recognition task, necessitating the management of complex time series. We observed that the reservoir effectively recognizes speech by extracting time-contextual information and weighting sensory inputs according to sensory noise. These findings indicate that the dynamic properties of recurrent networks are applicable to multi-sensory time series processing, positioning reservoir computing as a suitable model for multi-sensory integration.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro