{"title":"The Antibacterial Efficacy and Mechanism of Tea Polyphenol Against Drug-Resistant <i>Aeromonas veronii</i> TH0426 In Vitro.","authors":"Liying Peng, Zongtao Chen, Yanting Hei, Wenyan Wei, Defang Chen","doi":"10.1089/fpd.2024.0072","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of Motile Aeromonas Septicemia (MAS) caused by <i>Aeromonas veronii</i> in sturgeon farming has become a significant concern due to its high mortality impact on the aquaculture industry. The threat posed by MAS highlights the urgent need for effective control measures to combat bacterial infections in sturgeon populations. Tea polyphenol (TP) has demonstrated promising antibacterial properties against livestock and poultry bacterial infections. However, its antibacterial efficacy and mechanism in bacterial diseases of aquatic animals remain largely unexplored. This study aimed to investigate the <i>in vitro</i> antibacterial effect and mechanism of TP on fish-borne drug-resistant <i>A. veronii</i> TH0426 by assessing the impact of TP on TH0426 cell growth, antibiofilm activity, morphology, as well as measuring electrical conductivity, DNA extravasation, lactate dehydrogenase (LDH) activity, protein, and DNA contents. Results demonstrated that the minimum inhibitory concentration and the minimum bactericidal concentration of TP on TH0426 were 1024 and 2048 μg/mL, respectively. After a 4 h treatment, the growth of TH0426 was completely inhibited at the concentration of 1024 and 2048 μg/mL of TP. Meanwhile, TP exhibited a significant antibiofilm activity. Both scanning electron microscope and transmission electron microscope analyses revealed disrupted cell membrane structure, irregular cell morphology, and loss of intracellular contents following TP treatment. Moreover, increased cell membrane permeability induced by TP led to intracellular ion and DNA leakage, resulting in elevated electrical conductivity and DNA extravasation. Furthermore, TP decreased LDH activity, protein concentration and content, DNA fluorescence intensity, and density in a time-dependent manner, indicating inhibition of protein metabolism and DNA synthesis. In conclusion, TP exhibits potent antibacterial properties by inhibiting biofilm formation, disrupting cell membrane integrity, and interfering with protein metabolism and DNA synthesis in drug-resistant <i>A. veronii</i> TH0426 <i>in vitro</i>.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2024.0072","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of Motile Aeromonas Septicemia (MAS) caused by Aeromonas veronii in sturgeon farming has become a significant concern due to its high mortality impact on the aquaculture industry. The threat posed by MAS highlights the urgent need for effective control measures to combat bacterial infections in sturgeon populations. Tea polyphenol (TP) has demonstrated promising antibacterial properties against livestock and poultry bacterial infections. However, its antibacterial efficacy and mechanism in bacterial diseases of aquatic animals remain largely unexplored. This study aimed to investigate the in vitro antibacterial effect and mechanism of TP on fish-borne drug-resistant A. veronii TH0426 by assessing the impact of TP on TH0426 cell growth, antibiofilm activity, morphology, as well as measuring electrical conductivity, DNA extravasation, lactate dehydrogenase (LDH) activity, protein, and DNA contents. Results demonstrated that the minimum inhibitory concentration and the minimum bactericidal concentration of TP on TH0426 were 1024 and 2048 μg/mL, respectively. After a 4 h treatment, the growth of TH0426 was completely inhibited at the concentration of 1024 and 2048 μg/mL of TP. Meanwhile, TP exhibited a significant antibiofilm activity. Both scanning electron microscope and transmission electron microscope analyses revealed disrupted cell membrane structure, irregular cell morphology, and loss of intracellular contents following TP treatment. Moreover, increased cell membrane permeability induced by TP led to intracellular ion and DNA leakage, resulting in elevated electrical conductivity and DNA extravasation. Furthermore, TP decreased LDH activity, protein concentration and content, DNA fluorescence intensity, and density in a time-dependent manner, indicating inhibition of protein metabolism and DNA synthesis. In conclusion, TP exhibits potent antibacterial properties by inhibiting biofilm formation, disrupting cell membrane integrity, and interfering with protein metabolism and DNA synthesis in drug-resistant A. veronii TH0426 in vitro.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.