{"title":"Unveiling the Self-assembly and Therapeutic Efficacy of Antimicrobial Peptides SA4 Against Multidrug-Resistant A. baumannii.","authors":"Lalita Sharma, Gopal Singh Bisht","doi":"10.1007/s00284-024-03923-2","DOIUrl":null,"url":null,"abstract":"<p><p>Infections linked to Acinetobacter baumannii are one of the main risks of modern medicine. Biofilms formed by A. baumannii due to a protective extracellular polysaccharide matrix make them highly tolerant to conventional antibiotics and raise the possibility of antibiotic resistance. Antimicrobial peptides (AMPs) are gaining popularity due to their broad-spectrum actions and key properties of peptide self-assembly, making them a promising alternative to antibiotics. Here, we demonstrate that 12-residue synthetic self-assembled peptide SA4 nanostructures have enough antibacterial action to prevent the growth of mature bacterial biofilms. The SA4 peptide was successfully synthesized by using the solid-phase peptide synthesis method, and its self-assembly was prepared in water. The self-assembled peptide hydrogel formed nanotube structure was observed under a scanning electron microscope and further characterized to confirm their physical and molecular properties. The resulting hydrogel exhibits significant antibacterial activity against MDR A. baumannii strains (MDR-1 and MDR-2), responsible for many nosocomial infections. In addition, at various gel concentrations, this hydrogel has the potential to inhibit about 30-80% of biofilms formed by MDR strains. Furthermore, under a microscope, it has been observed that the rupture of the bacterial cell membrane and cell wall of A. baumannii cells is caused by peptide nanotubes generated by self-assemblies. Thus, peptide-based nanotubes present intriguing avenues for various biomedical applications. This is the first report of bacterial biofilm removal with SA4 peptide nanotubes, and offering a unique treatment for infections linked to biofilms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03923-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Infections linked to Acinetobacter baumannii are one of the main risks of modern medicine. Biofilms formed by A. baumannii due to a protective extracellular polysaccharide matrix make them highly tolerant to conventional antibiotics and raise the possibility of antibiotic resistance. Antimicrobial peptides (AMPs) are gaining popularity due to their broad-spectrum actions and key properties of peptide self-assembly, making them a promising alternative to antibiotics. Here, we demonstrate that 12-residue synthetic self-assembled peptide SA4 nanostructures have enough antibacterial action to prevent the growth of mature bacterial biofilms. The SA4 peptide was successfully synthesized by using the solid-phase peptide synthesis method, and its self-assembly was prepared in water. The self-assembled peptide hydrogel formed nanotube structure was observed under a scanning electron microscope and further characterized to confirm their physical and molecular properties. The resulting hydrogel exhibits significant antibacterial activity against MDR A. baumannii strains (MDR-1 and MDR-2), responsible for many nosocomial infections. In addition, at various gel concentrations, this hydrogel has the potential to inhibit about 30-80% of biofilms formed by MDR strains. Furthermore, under a microscope, it has been observed that the rupture of the bacterial cell membrane and cell wall of A. baumannii cells is caused by peptide nanotubes generated by self-assemblies. Thus, peptide-based nanotubes present intriguing avenues for various biomedical applications. This is the first report of bacterial biofilm removal with SA4 peptide nanotubes, and offering a unique treatment for infections linked to biofilms.