Hidden data recovery using reservoir computing: Adaptive network model and experimental brain signals.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Artem Badarin, Andrey Andreev, Vladimir Klinshov, Vladimir Antipov, Alexander E Hramov
{"title":"Hidden data recovery using reservoir computing: Adaptive network model and experimental brain signals.","authors":"Artem Badarin, Andrey Andreev, Vladimir Klinshov, Vladimir Antipov, Alexander E Hramov","doi":"10.1063/5.0223184","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of hidden data recovery is crucial in various scientific and technological fields, particularly in neurophysiology, where experimental data can often be incomplete or corrupted. We investigate the application of reservoir computing (RC) to recover hidden data from both model Kuramoto network system and real neurophysiological signals (EEG). Using an adaptive network of Kuramoto phase oscillators, we generated and analyzed macroscopic signals to understand the efficiency of RC in hidden signal recovery compared to linear regression (LR). Our findings indicate that RC significantly outperforms LR, especially in scenarios with reduced signal information. Furthermore, when applied to real EEG data, RC achieved more accurate signal reconstruction than traditional spline interpolation methods. These results underscore RC's potential for enhancing data recovery in neurophysiological studies, offering a robust solution to improve data integrity and reliability, which is essential for accurate scientific analysis and interpretation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of hidden data recovery is crucial in various scientific and technological fields, particularly in neurophysiology, where experimental data can often be incomplete or corrupted. We investigate the application of reservoir computing (RC) to recover hidden data from both model Kuramoto network system and real neurophysiological signals (EEG). Using an adaptive network of Kuramoto phase oscillators, we generated and analyzed macroscopic signals to understand the efficiency of RC in hidden signal recovery compared to linear regression (LR). Our findings indicate that RC significantly outperforms LR, especially in scenarios with reduced signal information. Furthermore, when applied to real EEG data, RC achieved more accurate signal reconstruction than traditional spline interpolation methods. These results underscore RC's potential for enhancing data recovery in neurophysiological studies, offering a robust solution to improve data integrity and reliability, which is essential for accurate scientific analysis and interpretation.

利用水库计算恢复隐藏数据:自适应网络模型和大脑实验信号。
隐藏数据的恢复问题在各个科技领域都至关重要,尤其是在神经生理学领域,因为实验数据往往不完整或已损坏。我们研究了水库计算(RC)在从模型仓本网络系统和真实神经生理信号(脑电图)中恢复隐藏数据方面的应用。利用仓本相位振荡器自适应网络,我们生成并分析了宏观信号,以了解与线性回归(LR)相比,水库计算在恢复隐藏信号方面的效率。我们的研究结果表明,RC 明显优于 LR,尤其是在信号信息减少的情况下。此外,当应用于真实脑电图数据时,RC 比传统的样条插值方法实现了更精确的信号重建。这些结果凸显了 RC 在增强神经生理学研究数据恢复方面的潜力,为提高数据完整性和可靠性提供了一个强大的解决方案,而数据完整性和可靠性对于准确的科学分析和解释至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信