Dynamics of a slow-fast Leslie-Gower predator-prey model with prey harvesting.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yantao Yang, Xiang Zhang, Jian Zu
{"title":"Dynamics of a slow-fast Leslie-Gower predator-prey model with prey harvesting.","authors":"Yantao Yang, Xiang Zhang, Jian Zu","doi":"10.1063/5.0204183","DOIUrl":null,"url":null,"abstract":"<p><p>For the Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, the known results are on the saddle-node bifurcation and the Hopf bifurcation of codimensions 1, the Bogdanov-Takens bifurcations of codimensions 2 and 3, and on the cyclicity of singular slow-fast cycles. Here, we focus on the global dynamics of the model in the slow-fast setting and obtain much richer dynamical phenomena than the existing ones, such as global stability of an equilibrium; an unstable canard cycle exploding to a homoclinic loop; coexistence of a stable canard cycle and an inner unstable homoclinic loop; and, consequently, coexistence of two canard cycles: a canard explosion via canard cycles without a head, canard cycles with a short head and a beard and a relaxation oscillation with a short beard. This last one should be a new dynamical phenomenon. Numerical simulations are provided to illustrate these theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0204183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For the Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, the known results are on the saddle-node bifurcation and the Hopf bifurcation of codimensions 1, the Bogdanov-Takens bifurcations of codimensions 2 and 3, and on the cyclicity of singular slow-fast cycles. Here, we focus on the global dynamics of the model in the slow-fast setting and obtain much richer dynamical phenomena than the existing ones, such as global stability of an equilibrium; an unstable canard cycle exploding to a homoclinic loop; coexistence of a stable canard cycle and an inner unstable homoclinic loop; and, consequently, coexistence of two canard cycles: a canard explosion via canard cycles without a head, canard cycles with a short head and a beard and a relaxation oscillation with a short beard. This last one should be a new dynamical phenomenon. Numerical simulations are provided to illustrate these theoretical results.

带有猎物捕获的慢-快莱斯利-高尔捕食者-猎物模型的动力学。
对于莱斯利-高尔(Leslie-Gower)捕食者-猎物模型与迈克尔斯-门顿(Michaelis-Menten)类型的猎物捕获,已知的结果有代维数 1 的鞍节点分岔和霍普夫分岔,代维数 2 和 3 的波格丹诺夫-塔肯斯分岔,以及奇异慢-快循环的周期性。在此,我们将重点放在模型在慢-快设置下的全局动力学上,并获得了比现有动力学现象更丰富的动力学现象,如平衡的全局稳定性;不稳定的卡纳得循环爆发为同轴循环;稳定的卡纳得循环和内部不稳定的同轴循环共存;以及两种卡纳得循环共存:通过无头卡纳得循环的卡纳得爆发、有短头和胡须的卡纳得循环以及有短胡须的松弛振荡。最后一种应该是一种新的动力学现象。我们通过数值模拟来说明这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信