Building a machine learning-assisted echocardiography prediction tool for children at risk for cancer therapy-related cardiomyopathy.

IF 3.2 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Lindsay A Edwards, Christina Yang, Surbhi Sharma, Zih-Hua Chen, Lahari Gorantla, Sanika A Joshi, Nicolas J Longhi, Nahom Worku, Jamie S Yang, Brandy Martinez Di Pietro, Saro Armenian, Aarti Bhat, William Border, Sujatha Buddhe, Nancy Blythe, Kayla Stratton, Kasey J Leger, Wendy M Leisenring, Lillian R Meacham, Paul C Nathan, Shanti Narasimhan, Ritu Sachdeva, Karim Sadak, Eric J Chow, Patrick M Boyle
{"title":"Building a machine learning-assisted echocardiography prediction tool for children at risk for cancer therapy-related cardiomyopathy.","authors":"Lindsay A Edwards, Christina Yang, Surbhi Sharma, Zih-Hua Chen, Lahari Gorantla, Sanika A Joshi, Nicolas J Longhi, Nahom Worku, Jamie S Yang, Brandy Martinez Di Pietro, Saro Armenian, Aarti Bhat, William Border, Sujatha Buddhe, Nancy Blythe, Kayla Stratton, Kasey J Leger, Wendy M Leisenring, Lillian R Meacham, Paul C Nathan, Shanti Narasimhan, Ritu Sachdeva, Karim Sadak, Eric J Chow, Patrick M Boyle","doi":"10.1186/s40959-024-00268-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite routine echocardiographic surveillance for childhood cancer survivors, the ability to predict cardiomyopathy risk in individual patients is limited. We explored the feasibility and optimal processes for machine learning-enhanced cardiomyopathy prediction in survivors using serial echocardiograms from five centers.</p><p><strong>Methods: </strong>We designed a series of deep convolutional neural networks (DCNNs) for prediction of cardiomyopathy (shortening fraction ≤ 28% or ejection fraction ≤ 50% on two occasions) for at-risk survivors ≥ 1-year post initial cancer therapy. We built DCNNs with four subsets of echocardiographic data differing in timing relative to case (survivor who developed cardiomyopathy) index diagnosis and two input formats (montages) with differing image selections. We used holdout subsets in a 10-fold cross-validation framework and standard metrics to assess model performance (e.g., F1-score, area under the precision-recall curve [AUPRC]). Performance of the input formats was compared using a combined 5 × 2 cross-validation F-test.</p><p><strong>Results: </strong>The dataset included 542 pairs of montages: 171 montage pairs from 45 cases at time of cardiomyopathy diagnosis or pre-diagnosis and 371 pairs from 70 at-risk survivors who didn't develop cardiomyopathy during follow-up (non-case). The DCNN trained to distinguish between non-case and time of cardiomyopathy diagnosis or pre-diagnosis case montages achieved an AUROC of 0.89 ± 0.02, AUPRC 0.83 ± 0.03, and F1-score: 0.76 ± 0.04. When limited to smaller subsets of case data (e.g., ≥ 1 or 2 years pre-diagnosis), performance worsened. Model input format did not impact performance accuracy across models.</p><p><strong>Conclusions: </strong>This methodology is a promising first step toward development of a DCNN capable of accurately differentiating pre-diagnosis versus non-case echocardiograms to predict survivors more likely to develop cardiomyopathy.</p>","PeriodicalId":9804,"journal":{"name":"Cardio-oncology","volume":"10 1","pages":"66"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardio-oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40959-024-00268-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite routine echocardiographic surveillance for childhood cancer survivors, the ability to predict cardiomyopathy risk in individual patients is limited. We explored the feasibility and optimal processes for machine learning-enhanced cardiomyopathy prediction in survivors using serial echocardiograms from five centers.

Methods: We designed a series of deep convolutional neural networks (DCNNs) for prediction of cardiomyopathy (shortening fraction ≤ 28% or ejection fraction ≤ 50% on two occasions) for at-risk survivors ≥ 1-year post initial cancer therapy. We built DCNNs with four subsets of echocardiographic data differing in timing relative to case (survivor who developed cardiomyopathy) index diagnosis and two input formats (montages) with differing image selections. We used holdout subsets in a 10-fold cross-validation framework and standard metrics to assess model performance (e.g., F1-score, area under the precision-recall curve [AUPRC]). Performance of the input formats was compared using a combined 5 × 2 cross-validation F-test.

Results: The dataset included 542 pairs of montages: 171 montage pairs from 45 cases at time of cardiomyopathy diagnosis or pre-diagnosis and 371 pairs from 70 at-risk survivors who didn't develop cardiomyopathy during follow-up (non-case). The DCNN trained to distinguish between non-case and time of cardiomyopathy diagnosis or pre-diagnosis case montages achieved an AUROC of 0.89 ± 0.02, AUPRC 0.83 ± 0.03, and F1-score: 0.76 ± 0.04. When limited to smaller subsets of case data (e.g., ≥ 1 or 2 years pre-diagnosis), performance worsened. Model input format did not impact performance accuracy across models.

Conclusions: This methodology is a promising first step toward development of a DCNN capable of accurately differentiating pre-diagnosis versus non-case echocardiograms to predict survivors more likely to develop cardiomyopathy.

为有癌症治疗相关心肌病风险的儿童建立机器学习辅助超声心动图预测工具。
背景:尽管对儿童癌症幸存者进行了常规超声心动图监测,但预测个别患者心肌病风险的能力仍然有限。我们利用五个中心的连续超声心动图,探索了机器学习增强型心肌病预测的可行性和最佳流程:我们设计了一系列深度卷积神经网络(DCNN),用于预测首次癌症治疗后≥1年的高危幸存者的心肌病(两次缩短率≤28%或射血分数≤50%)。我们使用四个超声心动图数据子集构建了 DCNN,这些数据子集的时间相对于病例(发生心肌病的幸存者)指数诊断和两种输入格式(蒙太奇)具有不同的图像选择。我们在 10 倍交叉验证框架中使用了保留子集和标准指标来评估模型性能(如 F1 分数、精度-召回曲线下面积 [AUPRC])。使用 5 × 2 交叉验证 F 测试对输入格式的性能进行了比较:数据集包括 542 对蒙太奇:数据集包括 542 对蒙太奇:171 对蒙太奇来自 45 个心肌病诊断时或诊断前的病例,371 对蒙太奇来自 70 个在随访期间未患心肌病的高危幸存者(非病例)。为区分非病例与心肌病诊断或诊断前病例蒙太奇而训练的 DCNN 的 AUROC 为 0.89 ± 0.02,AUPRC 为 0.83 ± 0.03,F1-score 为 0.76 ± 0.04。当局限于较小的病例数据子集时(如诊断前≥ 1 年或 2 年),性能有所下降。模型输入格式对不同模型的性能准确性没有影响:该方法是开发 DCNN 的有希望的第一步,DCNN 能够准确区分诊断前与非病例超声心动图,从而预测更有可能患心肌病的幸存者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardio-oncology
Cardio-oncology Medicine-Cardiology and Cardiovascular Medicine
CiteScore
5.00
自引率
3.00%
发文量
17
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信