Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types.

IF 4.4 1区 生物学 Q1 BIOLOGY
Chiara Maria Lavinia Loeffler, Omar S M El Nahhas, Hannah Sophie Muti, Zunamys I Carrero, Tobias Seibel, Marko van Treeck, Didem Cifci, Marco Gustav, Kevin Bretz, Nadine T Gaisa, Kjong-Van Lehmann, Alexandra Leary, Pier Selenica, Jorge S Reis-Filho, Nadina Ortiz-Bruechle, Jakob Nikolas Kather
{"title":"Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types.","authors":"Chiara Maria Lavinia Loeffler, Omar S M El Nahhas, Hannah Sophie Muti, Zunamys I Carrero, Tobias Seibel, Marko van Treeck, Didem Cifci, Marco Gustav, Kevin Bretz, Nadine T Gaisa, Kjong-Van Lehmann, Alexandra Leary, Pier Selenica, Jorge S Reis-Filho, Nadina Ortiz-Bruechle, Jakob Nikolas Kather","doi":"10.1186/s12915-024-02022-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types.</p><p><strong>Methods: </strong>We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value.</p><p><strong>Results: </strong>Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities.</p><p><strong>Conclusions: </strong>This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"225"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02022-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types.

Methods: We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value.

Results: Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities.

Conclusions: This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.

在九种不同肿瘤类型中,利用基于注意力的多实例学习,从常规组织学预测同源重组缺陷。
背景:同源重组缺陷(HRD同源重组缺陷(HRD)被认为是一种泛癌症预测性生物标志物,有可能表明哪些人可以从 PARP 抑制剂(PARPi)的治疗中获益。尽管具有重要的临床意义,但 HRD 检测却非常复杂。在此,我们在一项概念验证研究中调查了深度学习(DL)能否仅根据常规苏木精和伊红(H&E)组织学图像预测九种不同癌症类型的 HRD 状态:我们利用注意力加权多实例学习(attMIL)开发了一个深度学习管道,用于从组织学图像预测HRD状态。作为方法的一部分,我们结合两个独立队列中5209名患者的全基因组测序(WGS)数据中的杂合性缺失(LOH)、端粒等位基因不平衡(TAI)和大规模状态转换(LST),计算出了基因组疤痕HRD评分。使用接收者操作特征曲线下面积(AUROC)对模型的有效性进行了评估,重点评估了该模型对照临床公认的临界值预测基因组HRD的准确性:我们的研究证明了基因组 HRD 状态在子宫内膜癌、胰腺癌和肺癌中的可预测性,经交叉验证的 AUROC 分别为 0.79、0.58 和 0.66。这些预测结果很好地推广到外部队列中,AUROC 分别为 0.93、0.81 和 0.73。此外,基于图像的乳腺癌HRD分类器在内部验证队列中的AUROC为0.78,并能预测子宫内膜癌、前列腺癌和胰腺癌的HRD,AUROC分别为0.87、0.84和0.67,这表明这些肿瘤实体存在类似HRD的共同表型:本研究证实,使用 attMIL 可以直接从 H&E 切片预测 HRD,并证明其适用于九种不同类型的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信