A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert
{"title":"A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing.","authors":"Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert","doi":"10.1088/1758-5090/ad847f","DOIUrl":null,"url":null,"abstract":"<p><p>Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complex in-vitro models allow re-creation of in-vivo tumor complexities in an in-vitro setting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96 -chip 2-lane microfluidic assay system, we present a novel, scalable, complex in vitro microphysiological assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (~5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8.CAR-T cells (chimeric antigen receptor (CAR)-T cells) that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.&#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad847f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complex in-vitro models allow re-creation of in-vivo tumor complexities in an in-vitro setting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96 -chip 2-lane microfluidic assay system, we present a novel, scalable, complex in vitro microphysiological assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (~5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8.CAR-T cells (chimeric antigen receptor (CAR)-T cells) that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy. .

用于研究 T 细胞趋化、迁移和肿瘤杀伤的微观生理学试验。
对免疫疗法无反应患者的肿瘤存在一系列障碍,阻碍效应 T 细胞发挥功效。因此,在治疗上调节趋化机制,使效应 T 细胞浸润肿瘤并发挥作用,可以取得更成功的治疗效果。复杂的体外模型可以在体外环境中再现体内肿瘤的复杂性,从而提高实验室规模的病人生物学转化能力。我们发现工业规模的微观生理学(MPS)测定方法存在空白,无法更快地验证肿瘤微环境中T细胞趋化和效应功能的靶点和策略。我们利用市售的 96 片 2 通道微流控分析系统,提出了一种新型、可扩展、复杂的体外微物理分析方法,用于研究三维 T 细胞在富含细胞外基质(ECM)的原生多细胞肿瘤环境中的趋化和功能。用远红核染色剂染色的活化或幼稚 CD3+ T 细胞对 matrigel-collagen ECM 内产生的趋化因子梯度做出反应,以浓度和细胞类型依赖的方式迁移到微流体通道(约 5 毫米水平窗口)中。此外,我们还观察并跟踪了抗原特异性 CD4.CD8.CAR-T 细胞(嵌合抗原受体 (CAR)-T 细胞)的趋化和癌细胞杀伤功能,这些细胞对通过含有基质的 5 毫米宽阔癌细胞集落建立的 CXCR3 激动剂梯度做出了反应。双通道检测系统提供了有关 CAR-T 细胞趋化性和肿瘤杀伤力的供体和剂量依赖性差异的有用信息。这种可扩展的测定系统为研究免疫细胞在内皮以外的组织空间的迁移和功能提供了一个细化的窗口,解决了研究组织特异性免疫细胞趋化和功能方面的一个缺失,从而推动了癌症免疫疗法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信