{"title":"Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine.","authors":"Hossein Rayat Pisheh, Alireza Sabzevari, Mojtaba Ansari, Kourosh Kabiri","doi":"10.1002/bip.23631","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23631"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23631","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.