The exocyst in context.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sasha Meek, Altair C Hernandez, Baldomero Oliva, Oriol Gallego
{"title":"The exocyst in context.","authors":"Sasha Meek, Altair C Hernandez, Baldomero Oliva, Oriol Gallego","doi":"10.1042/BST20231401","DOIUrl":null,"url":null,"abstract":"<p><p>The exocyst is a hetero-octameric complex involved in the exocytosis arm of cellular trafficking. Specifically, it tethers secretory vesicles to the plasma membrane, but it is also a main convergence point for many players of exocytosis: regulatory proteins, motor proteins, lipids and Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins are all connected physically by the exocyst. Despite extensive knowledge about its structure and interactions, the exocyst remains an enigma precisely because of its increasingly broad and flexible role across the exocytosis process. To solve the molecular mechanism of such a multi-tasking complex, dynamical structures with self, other proteins, and environment should be described. And to do this, interrogation within contexts increasingly close to native conditions is needed. Here we provide a perspective on how different experimental contexts have been used to study the exocyst, and those that could be used in the future. This review describes the structural breakthroughs on the isolated in vitro exocyst, followed by the use of membrane reconstitution assays for revealing in vitro exocyst functionality. Next, it moves to in situ cell contexts, reviewing imaging techniques that have been, and that ideally could be, used to look for near-native structure and organization dynamics. Finally, it looks at the exocyst structure in situ within evolutionary contexts, and the potential of structure prediction therein. From in vitro, to in situ, cross-context investigation of exocyst structure has begun, and will be critical for functional mechanism elucidation.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2113-2122"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231401","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The exocyst is a hetero-octameric complex involved in the exocytosis arm of cellular trafficking. Specifically, it tethers secretory vesicles to the plasma membrane, but it is also a main convergence point for many players of exocytosis: regulatory proteins, motor proteins, lipids and Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins are all connected physically by the exocyst. Despite extensive knowledge about its structure and interactions, the exocyst remains an enigma precisely because of its increasingly broad and flexible role across the exocytosis process. To solve the molecular mechanism of such a multi-tasking complex, dynamical structures with self, other proteins, and environment should be described. And to do this, interrogation within contexts increasingly close to native conditions is needed. Here we provide a perspective on how different experimental contexts have been used to study the exocyst, and those that could be used in the future. This review describes the structural breakthroughs on the isolated in vitro exocyst, followed by the use of membrane reconstitution assays for revealing in vitro exocyst functionality. Next, it moves to in situ cell contexts, reviewing imaging techniques that have been, and that ideally could be, used to look for near-native structure and organization dynamics. Finally, it looks at the exocyst structure in situ within evolutionary contexts, and the potential of structure prediction therein. From in vitro, to in situ, cross-context investigation of exocyst structure has begun, and will be critical for functional mechanism elucidation.

外囊的背景
外囊是一种异八聚体复合物,参与细胞运输的外泌臂。具体来说,它将分泌囊泡拴系在质膜上,但它也是外泌过程中许多参与者的主要汇集点:调节蛋白、运动蛋白、脂质和可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)蛋白都通过外囊进行物理连接。尽管对外囊的结构和相互作用有着广泛的了解,但外囊仍然是一个谜,这正是因为它在整个外吞过程中发挥着越来越广泛和灵活的作用。要解决这种多任务复合体的分子机制问题,就必须描述其与自身、其他蛋白质和环境之间的动态结构。而要做到这一点,就需要在越来越接近原生条件的环境中进行研究。在此,我们将从不同的实验情境来研究外囊,以及未来可能使用的实验情境。这篇综述介绍了在分离体外囊结构方面取得的突破,随后介绍了利用膜重组实验揭示体外外囊功能的方法。接下来,文章转向原位细胞环境,回顾了已经使用和理想情况下可以使用的成像技术,以寻找近原生结构和组织动态。最后,研究将探讨进化背景下的原位外囊结构,以及结构预测的潜力。从体外到原位,对外囊结构的跨环境研究已经开始,这对于功能机制的阐明至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信