{"title":"Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria tenuissima","authors":"Tongyu Mu, Zhonglei Wang, Zhijun Liu, Xuehong Wu","doi":"10.1007/s00705-024-06145-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in <i>Alternaria tenuissima</i> strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5ʹ and 3ʹ untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus <i>Duamitovirus</i> within the family <i>Mitoviridae.</i> Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus <i>Duamitovirus</i>. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting <i>A. tenuissima</i>.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"169 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06145-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in Alternaria tenuissima strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5ʹ and 3ʹ untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus Duamitovirus within the family Mitoviridae. Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus Duamitovirus. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting A. tenuissima.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.