Responses of oak seedlings to increased herbivory and drought: a possible trade-off?

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Marta Peláez, Aida López-Sánchez, Geraldo Wilson Fernandes, Rodolfo Dirzo, Jesús Rodríguez-Calcerrada, Ramón Perea
{"title":"Responses of oak seedlings to increased herbivory and drought: a possible trade-off?","authors":"Marta Peláez, Aida López-Sánchez, Geraldo Wilson Fernandes, Rodolfo Dirzo, Jesús Rodríguez-Calcerrada, Ramón Perea","doi":"10.1093/aob/mcae178","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Anthropogenic disturbances are causing a co-occurring increase in biotic (ungulate herbivory) and abiotic (drought) stressors, threatening plant reproduction in oak-dominated ecosystems. However, we wonder whether herbivory could compensate for the adverse impact of drought by reducing evapotranspiration. Thus, we investigate the isolated and joint effects of herbivory and drought on oak seedlings of two contrasting Mediterranean species that differ in leaf habit and drought resistance.</p><p><strong>Methods: </strong>California oak seedlings from the evergreen, and more drought-resistant, Quercus agrifolia and the deciduous Q. lobata (n=387) were assigned to a fully crossed factorial design with herbivory and drought as stress factors. Seedlings were assigned in a greenhouse to 3-4 clipping levels simulating herbivory and 3-4 watering levels, depending on the species. We measured survival, growth, and leaf attributes (chlorophyll, secondary metabolites, leaf area and weight) once a month (May-Sep) and harvested above- and below-ground biomass at the end of the growing season.</p><p><strong>Key results: </strong>For both oak species, simulated herbivory enhanced seedling survival during severe drought or delayed its adverse effects, probably due to reduced transpiration resulting from herbivory-induced leaf area reduction and compensatory root growth. Seedlings from the deciduous, and less drought-resistant species, benefitted from herbivory at lower levels of water stress, suggesting different response across species. We also found complex interactions between herbivory and drought on their impact on leaf attributes. In contrast to chlorophyll content which was not affected by herbivory, anthocyanins increased with herbivory - although water stress reduced differences in anthocyanins due to herbivory.</p><p><strong>Conclusions: </strong>Herbivory seems to facilitate Mediterranean oak seedlings to withstand summer drought, potentially alleviating a key bottleneck in the oak recruitment process. Our study highlights the need to consider ontogenetic stages and species-specific traits in understanding complex relationships between herbivory and drought stressors for the persistence and restoration of multi-species oak savannas.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae178","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Anthropogenic disturbances are causing a co-occurring increase in biotic (ungulate herbivory) and abiotic (drought) stressors, threatening plant reproduction in oak-dominated ecosystems. However, we wonder whether herbivory could compensate for the adverse impact of drought by reducing evapotranspiration. Thus, we investigate the isolated and joint effects of herbivory and drought on oak seedlings of two contrasting Mediterranean species that differ in leaf habit and drought resistance.

Methods: California oak seedlings from the evergreen, and more drought-resistant, Quercus agrifolia and the deciduous Q. lobata (n=387) were assigned to a fully crossed factorial design with herbivory and drought as stress factors. Seedlings were assigned in a greenhouse to 3-4 clipping levels simulating herbivory and 3-4 watering levels, depending on the species. We measured survival, growth, and leaf attributes (chlorophyll, secondary metabolites, leaf area and weight) once a month (May-Sep) and harvested above- and below-ground biomass at the end of the growing season.

Key results: For both oak species, simulated herbivory enhanced seedling survival during severe drought or delayed its adverse effects, probably due to reduced transpiration resulting from herbivory-induced leaf area reduction and compensatory root growth. Seedlings from the deciduous, and less drought-resistant species, benefitted from herbivory at lower levels of water stress, suggesting different response across species. We also found complex interactions between herbivory and drought on their impact on leaf attributes. In contrast to chlorophyll content which was not affected by herbivory, anthocyanins increased with herbivory - although water stress reduced differences in anthocyanins due to herbivory.

Conclusions: Herbivory seems to facilitate Mediterranean oak seedlings to withstand summer drought, potentially alleviating a key bottleneck in the oak recruitment process. Our study highlights the need to consider ontogenetic stages and species-specific traits in understanding complex relationships between herbivory and drought stressors for the persistence and restoration of multi-species oak savannas.

橡树幼苗对食草动物增加和干旱的反应:可能的权衡?
背景和目的:人为干扰导致生物(麋鹿食草)和非生物(干旱)压力同时增加,威胁着以栎树为主的生态系统中的植物繁殖。然而,我们想知道食草动物是否能通过减少蒸腾作用来补偿干旱的不利影响。因此,我们研究了食草动物和干旱对两种截然不同的地中海栎树幼苗的单独和共同影响:方法:将常绿且抗旱性更强的加州栎树苗和落叶栎树苗(n=387)分配到以食草动物和干旱为胁迫因子的完全交叉因子设计中。根据树种的不同,幼苗在温室中被分配到 3-4 个模拟草食性的剪枝水平和 3-4 个浇水水平。我们每月(5 月至 9 月)测量一次存活、生长和叶片属性(叶绿素、次生代谢物、叶面积和重量),并在生长季节结束时收获地上和地下生物量:主要结果:对于两种栎树,模拟草食性都能提高幼苗在严重干旱期间的存活率或延缓其不利影响,这可能是由于草食性引起的叶面积减少和根系补偿性生长导致蒸腾作用降低。落叶树种和抗旱性较差的树种的幼苗在较低的水分胁迫水平下也能从草食性中获益,这表明不同树种有不同的反应。我们还发现,草食性和干旱对叶片属性的影响之间存在复杂的相互作用。叶绿素含量不受食草动物的影响,而花青素则随食草动物的影响而增加--尽管水胁迫减少了食草动物造成的花青素差异:草食性似乎有助于地中海栎幼苗抵御夏季干旱,从而有可能缓解栎树生长过程中的一个关键瓶颈。我们的研究强调,在理解草食性和干旱胁迫之间的复杂关系时,需要考虑本体发育阶段和物种的特异性,以保持和恢复多物种橡树稀树草原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信