Single-Step PECVD Synthesis of Graphene@Carbon Nanotubes Electrocatalyst.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chaoxu Hao, Mai Li, Jinghui Yang, Xuedong Wang, Yuhang Xia, Changqing Chu, Zhiming Liu, Yan He, Haina Ci
{"title":"Single-Step PECVD Synthesis of Graphene@Carbon Nanotubes Electrocatalyst.","authors":"Chaoxu Hao, Mai Li, Jinghui Yang, Xuedong Wang, Yuhang Xia, Changqing Chu, Zhiming Liu, Yan He, Haina Ci","doi":"10.1002/smtd.202401101","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene (Gr) and carbon nanotubes (CNTs), the two intriguing carbon nanomaterials, have presented great potential in serving as high-performance electrocatalysts in lithium-sulfur (Li-S) chemistry. The concurrent management of both materials would achieve a promoted synergistic effect. Nevertheless, there still remains a lack of an effective material synthesis route. Herein, a single-step plasma-enhanced chemical vapor deposition (PECVD) strategy is devised to prepare Gr@CNTs heterostructures with strong bonded connections. In the PECVD system, the damaged sidewalls generated in CNT tubes can serve as appropriate nucleation sites for further Gr growth. The formation mechanisms are thoroughly explored in aspects of both experimental characterizations and theoretical calculations. To confirm the validity of this approach, thus-constructed Gr@CNTs architectures are employed as the sulfur host, enabling boosted redox kinetics of polysulfides. This project provides fundamental insight into the mechanism exploration for single-step PECVD growth of Gr@CNTs heterostructure, hence promoting the practical application prospect of carbon nanomaterials toward Li-S systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401101"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401101","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene (Gr) and carbon nanotubes (CNTs), the two intriguing carbon nanomaterials, have presented great potential in serving as high-performance electrocatalysts in lithium-sulfur (Li-S) chemistry. The concurrent management of both materials would achieve a promoted synergistic effect. Nevertheless, there still remains a lack of an effective material synthesis route. Herein, a single-step plasma-enhanced chemical vapor deposition (PECVD) strategy is devised to prepare Gr@CNTs heterostructures with strong bonded connections. In the PECVD system, the damaged sidewalls generated in CNT tubes can serve as appropriate nucleation sites for further Gr growth. The formation mechanisms are thoroughly explored in aspects of both experimental characterizations and theoretical calculations. To confirm the validity of this approach, thus-constructed Gr@CNTs architectures are employed as the sulfur host, enabling boosted redox kinetics of polysulfides. This project provides fundamental insight into the mechanism exploration for single-step PECVD growth of Gr@CNTs heterostructure, hence promoting the practical application prospect of carbon nanomaterials toward Li-S systems.

单步 PECVD 法合成石墨烯@碳纳米管电催化剂。
石墨烯(Gr)和碳纳米管(CNTs)这两种引人入胜的碳纳米材料在作为锂-硫(Li-S)化学的高性能电催化剂方面具有巨大潜力。同时使用这两种材料将产生协同效应。然而,目前仍缺乏有效的材料合成途径。本文设计了一种单步等离子体增强化学气相沉积(PECVD)策略,用于制备具有强键连接的 Gr@CNTs 异质结构。在 PECVD 系统中,CNT 管中产生的受损侧壁可作为进一步生长 Gr 的适当成核点。我们从实验表征和理论计算两方面深入探讨了其形成机制。为了证实这种方法的有效性,将由此构建的 Gr@CNTs 结构用作硫宿主,从而提高了多硫化物的氧化还原动力学。该项目为探索单步 PECVD 生长 Gr@CNTs 异质结构的机理提供了基本见解,从而推动了碳纳米材料在锂-S 系统中的实际应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信