Graphene Chainmail-Enabled Moderate Precatalyst Phase Evolution for Sustainable Polysulfide Electrocatalysis in Li─S Batteries.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-10 DOI:10.1002/smll.202407196
Jiaxi Gu, Zixiong Shi, Tianran Yan, Meng Tian, Ziang Chen, Shaoqing Chen, Yifan Ding, Miaoyu Lu, Yuhan Zou, Jincan Zhang, Liang Zhang, Jingyu Sun
{"title":"Graphene Chainmail-Enabled Moderate Precatalyst Phase Evolution for Sustainable Polysulfide Electrocatalysis in Li─S Batteries.","authors":"Jiaxi Gu, Zixiong Shi, Tianran Yan, Meng Tian, Ziang Chen, Shaoqing Chen, Yifan Ding, Miaoyu Lu, Yuhan Zou, Jincan Zhang, Liang Zhang, Jingyu Sun","doi":"10.1002/smll.202407196","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of polysulfide electrocatalysts is of vital importance to achieve longevous Li─S batteries. Notwithstanding fruitful advances made in elevating electrocatalytic activity, efforts to regulate precatalyst phase evolution and protect active sites are still lacking. Herein, an in situ graphene-encapsulated bimetallic model catalyst (CoNi@G) is developed for striking a balance between electrocatalytic activity and stability for sulfur electrochemistry. The layer numbers of directly grown graphene can be dictated by tuning the synthetic duration. Exhaustive experimental and theoretical analysis comprehensively reveals that the tailored graphene chainmail boosts catalytic durability while guaranteeing moderate phase evolution, accordingly attaining a decorated surface sulfidation with advanced catalytic essence. Benefiting from the sustainable polysulfide electrocatalysis, CoNi@G enabled sulfur electrodes to harvest a capacity output of 1276.2 mAh g<sup>-1</sup> at 0.2 C and a negligible capacity decay of 0.055% per cycle after 1000 cycles at 1.0 C. Such a maneuver can be readily extended to other metallic catalysts including NiFe, CoFe, or Co. The work elucidates the precatalyst phase evolution mechanism through a controllable graphene-armored strategy, offering meaningful guidance to realize durable electrocatalysts in Li─S batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407196","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of polysulfide electrocatalysts is of vital importance to achieve longevous Li─S batteries. Notwithstanding fruitful advances made in elevating electrocatalytic activity, efforts to regulate precatalyst phase evolution and protect active sites are still lacking. Herein, an in situ graphene-encapsulated bimetallic model catalyst (CoNi@G) is developed for striking a balance between electrocatalytic activity and stability for sulfur electrochemistry. The layer numbers of directly grown graphene can be dictated by tuning the synthetic duration. Exhaustive experimental and theoretical analysis comprehensively reveals that the tailored graphene chainmail boosts catalytic durability while guaranteeing moderate phase evolution, accordingly attaining a decorated surface sulfidation with advanced catalytic essence. Benefiting from the sustainable polysulfide electrocatalysis, CoNi@G enabled sulfur electrodes to harvest a capacity output of 1276.2 mAh g-1 at 0.2 C and a negligible capacity decay of 0.055% per cycle after 1000 cycles at 1.0 C. Such a maneuver can be readily extended to other metallic catalysts including NiFe, CoFe, or Co. The work elucidates the precatalyst phase evolution mechanism through a controllable graphene-armored strategy, offering meaningful guidance to realize durable electrocatalysts in Li─S batteries.

Abstract Image

石墨烯链栅催化可持续多硫化物电催化在锂离子电池中的适度前催化剂相变。
合理设计多硫化物电催化剂对于实现长寿命锂电池至关重要。尽管在提高电催化活性方面取得了丰硕成果,但在调节前催化剂相变和保护活性位点方面仍缺乏努力。本文开发了一种原位石墨烯封装双金属模型催化剂(CoNi@G),以在硫电化学的电催化活性和稳定性之间取得平衡。直接生长的石墨烯的层数可通过调整合成持续时间来决定。详尽的实验和理论分析全面揭示了量身定制的石墨烯链可以提高催化持久性,同时保证适度的相演化,从而获得具有先进催化本质的装饰性表面硫化。得益于可持续的多硫化物电催化,CoNi@G 使硫电极在 0.2 摄氏度的条件下获得了 1276.2 mAh g-1 的容量输出,并且在 1.0 摄氏度的条件下循环 1000 次后,每次循环的容量衰减为 0.055%,可以忽略不计。这项研究通过一种可控的石墨烯铠装策略阐明了前催化剂相演化机制,为实现锂离子电池中耐用的电催化剂提供了有意义的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信