{"title":"Post-Functionalization of Fluorinated Dibenzosulfone-Based Conjugated Polymer for Smart 'Turn-off' Sensing of Cu<sup>2+</sup> Ions.","authors":"Krishnendu Maity, Soumitra Sau, Suman Kalyan Samanta","doi":"10.1002/asia.202401053","DOIUrl":null,"url":null,"abstract":"<p><p>Post-functionalization of conjugated polymeric backbone with various N-containing heterocycles through nucleophilic aromatic substitution reaction (S<sub>N</sub>Ar) demonstrates crucial tailoring of their photophysical properties. This study explores an approach of post-polymerization modification of a fluorinated dibenzosulfone-based conjugated polymer aiming to incorporate functional groups having coordinating sites to bind metal ions. The resulting polymers, namely BDT-DBTS-IM, BDT-DBTS-TR, and BDT-DBTS-PY revealed successful substitution reactions with imidazole, triazole, and pyridine respectively, and showed significant changes in their absorption and emission properties. Notably, BDT-DBTS-IM demonstrated exceptional performance as a chemosensor, exhibiting a dramatic fluorescence turn-off response specifically to copper ions (Cu<sup>2+</sup>) with the limit of detection of 26 nM and Stern-Volmer quenching constant (K<sub>SV</sub>) of 8.2×10<sup>5</sup> Lmol<sup>-1</sup>. This high selectivity and sensitivity are attributed to the ability of the imidazole group to form a stable complex with Cu<sup>2+</sup>, resulting in both static and dynamic quenching efficiently. Our findings underscore the potential of post-polymerization modifications to significantly enhance the functionality of conjugated polymers. The ability of BDT-DBTS-IM to detect trace levels of copper ions with high precision highlights its practical utility in environmental and biological monitoring. This research not only demonstrates an approach for post-polymeric modification through S<sub>N</sub>Ar reaction but also opens new avenues for developing sensors.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401053"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401053","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-functionalization of conjugated polymeric backbone with various N-containing heterocycles through nucleophilic aromatic substitution reaction (SNAr) demonstrates crucial tailoring of their photophysical properties. This study explores an approach of post-polymerization modification of a fluorinated dibenzosulfone-based conjugated polymer aiming to incorporate functional groups having coordinating sites to bind metal ions. The resulting polymers, namely BDT-DBTS-IM, BDT-DBTS-TR, and BDT-DBTS-PY revealed successful substitution reactions with imidazole, triazole, and pyridine respectively, and showed significant changes in their absorption and emission properties. Notably, BDT-DBTS-IM demonstrated exceptional performance as a chemosensor, exhibiting a dramatic fluorescence turn-off response specifically to copper ions (Cu2+) with the limit of detection of 26 nM and Stern-Volmer quenching constant (KSV) of 8.2×105 Lmol-1. This high selectivity and sensitivity are attributed to the ability of the imidazole group to form a stable complex with Cu2+, resulting in both static and dynamic quenching efficiently. Our findings underscore the potential of post-polymerization modifications to significantly enhance the functionality of conjugated polymers. The ability of BDT-DBTS-IM to detect trace levels of copper ions with high precision highlights its practical utility in environmental and biological monitoring. This research not only demonstrates an approach for post-polymeric modification through SNAr reaction but also opens new avenues for developing sensors.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).