{"title":"Fabrication of Thermo-Responsive Polymer-MOF@cellulase Composites with Improved Catalytic Performance for Hydrolysis of Cellulose.","authors":"Muhammad Ali Tajwar, Yutong Liu, Li Qi","doi":"10.1002/asia.202400990","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) are considered as an ideal enzyme support because of their porous structural superiority. However, MOFs@enzyme composites have usually compromised their hydrolysis efficiency due to the narrow space inducing unfavourable enzyme conformations. Herein, a thermo-responsive poly(N,N-dimethylacrylamide) (PD) was fixed onto the surface of UiO-66-NH<sub>2</sub> (UiO) through a post-synthetic modification protocol. Using poly(2-vinyl-4,4 dimethylazlactone) (V) as a linker, PVD-UiO@cellulase composites were fabricated after cellulase was immobilized onto the UiO surface through covalent bonding. The composites conferred favorable cellulase conformations, boosting hydrolysis efficiency and stability, which relied on the soft PVD shell and confinement effect yielded by the curled PVD chains at high temperatures. Compared with free cellulase, the proposed composites exhibited a 33.1-fold enhancement of the K<sub>cat</sub> values at 50 °C. The PVD-UiO@cellulase composites were applied to the hydrolysis of cellulose in the stalks and leaves of Epipremnum aureum. The results highlight the potential of smart PVD-UiO@cellulase composites in the hydrolysis of cellulose, affording a valuable platform for the preparation of unique MOFs@enzyme composites and their industrial applications.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400990"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400990","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) are considered as an ideal enzyme support because of their porous structural superiority. However, MOFs@enzyme composites have usually compromised their hydrolysis efficiency due to the narrow space inducing unfavourable enzyme conformations. Herein, a thermo-responsive poly(N,N-dimethylacrylamide) (PD) was fixed onto the surface of UiO-66-NH2 (UiO) through a post-synthetic modification protocol. Using poly(2-vinyl-4,4 dimethylazlactone) (V) as a linker, PVD-UiO@cellulase composites were fabricated after cellulase was immobilized onto the UiO surface through covalent bonding. The composites conferred favorable cellulase conformations, boosting hydrolysis efficiency and stability, which relied on the soft PVD shell and confinement effect yielded by the curled PVD chains at high temperatures. Compared with free cellulase, the proposed composites exhibited a 33.1-fold enhancement of the Kcat values at 50 °C. The PVD-UiO@cellulase composites were applied to the hydrolysis of cellulose in the stalks and leaves of Epipremnum aureum. The results highlight the potential of smart PVD-UiO@cellulase composites in the hydrolysis of cellulose, affording a valuable platform for the preparation of unique MOFs@enzyme composites and their industrial applications.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).