Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters via a "Reserve-Release" Crystallization Strategy.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiangyu Miao, Rui Han, Juan Tian, Yuanchi Ma, Alejandro J Müller, Zhibo Li
{"title":"Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters via a \"Reserve-Release\" Crystallization Strategy.","authors":"Xiangyu Miao, Rui Han, Juan Tian, Yuanchi Ma, Alejandro J Müller, Zhibo Li","doi":"10.1002/anie.202417627","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity (\"reserve\") albeit with vast potential for strain-induced crystallization (\"release\"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the \"reserve-release\" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity ("reserve") albeit with vast potential for strain-induced crystallization ("release"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the "reserve-release" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.

通过 "储备-释放 "结晶策略从多嵌段共聚物中制造超强、坚韧和可生物降解的热塑性弹性体。
同时获得高强度和韧性一直是设计热塑性弹性体,尤其是可生物降解弹性体的重大挑战。在此背景下,我们提出了一类基于多嵌段共聚聚酯的可生物降解弹性体,尽管化学合成和样品处理过程非常简便,但这种弹性体仍能提供非凡的强度、韧性和低应变回弹性。由于加入了半结晶软嵌段并明智地选择了嵌段周期,这些热塑性材料的静态结晶度("储备")很低,但应变诱导结晶("释放")的潜力巨大,从而显著提高了它们的极限强度和能量耗散能力。此外,这种材料的机械响应范围很广,从增强弹性体到形状记忆材料,再到增韧热塑性塑料,都可以通过正交变化段长度和比率来实现。这项工作和本文中的 "储备-释放 "结晶策略凸显了双结晶多嵌段链结构是调和热塑性弹性体强度-韧性权衡的潜在途径,并有可能扩展到其他可生物降解构建模块,以提供具有不同机械性能的功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信