Yuqing Song, Nan Yan, Lingli Wan, Jingjing Li and Ye Gao
{"title":"Organic/inorganic heterostructures templated by interfacial instability-driven BCP colloids in deformable emulsion droplets†","authors":"Yuqing Song, Nan Yan, Lingli Wan, Jingjing Li and Ye Gao","doi":"10.1039/D4SM00921E","DOIUrl":null,"url":null,"abstract":"<p >Hybrid heterostructure materials have received considerable attention due to the integration of each component and abundant functional applications in micromotors, catalysis, photothermal therapy, drug delivery, and bioimaging. However, the preparation of organic/inorganic heterostructure nanoparticles (HSNPs) with high quality still remains a remarkable challenge since thermodynamically metastable structures usually coexist, resulting in a lack of organic scaffolds with extreme uniformity both in shape and size distribution. Here, we prepared polystyrene-<em>block</em>-poly(4-vinylpyridine) (PS-<em>b</em>-P4VP) block copolymer (BCP) core–shell spherical colloids driven by interfacial instability of soft and deformable emulsion droplets. Ultra-low interfacial tension was achieved through the co-adsorption of BCP segments and sodium dodecyl sulfate (SDS) surfactant, which had a strong affinity with the P4VP segment at the interface of the emulsified droplets. The excellent and homogeneous BCP colloids were further utilized as organic scaffolds to selectively grow a functional SiO<small><sub>2</sub></small> layer on the surface of the BCP spherical colloids, producing BCP/SiO<small><sub>2</sub></small> HSNPs with highly uniform shape and size distribution originating from the PS-<em>b</em>-P4VP scaffolds, thus providing an efficient and general strategy to construct and design organic/inorganic HSNPs with diverse applications.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 41","pages":" 8174-8180"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00921e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid heterostructure materials have received considerable attention due to the integration of each component and abundant functional applications in micromotors, catalysis, photothermal therapy, drug delivery, and bioimaging. However, the preparation of organic/inorganic heterostructure nanoparticles (HSNPs) with high quality still remains a remarkable challenge since thermodynamically metastable structures usually coexist, resulting in a lack of organic scaffolds with extreme uniformity both in shape and size distribution. Here, we prepared polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) core–shell spherical colloids driven by interfacial instability of soft and deformable emulsion droplets. Ultra-low interfacial tension was achieved through the co-adsorption of BCP segments and sodium dodecyl sulfate (SDS) surfactant, which had a strong affinity with the P4VP segment at the interface of the emulsified droplets. The excellent and homogeneous BCP colloids were further utilized as organic scaffolds to selectively grow a functional SiO2 layer on the surface of the BCP spherical colloids, producing BCP/SiO2 HSNPs with highly uniform shape and size distribution originating from the PS-b-P4VP scaffolds, thus providing an efficient and general strategy to construct and design organic/inorganic HSNPs with diverse applications.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.