Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF4:Yb,Tm UCNPs.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liting Xu, Yi Li, Wei Liu, Yonggang Yang
{"title":"Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF<sub>4</sub>:Yb,Tm UCNPs.","authors":"Liting Xu, Yi Li, Wei Liu, Yonggang Yang","doi":"10.1039/d4mh00966e","DOIUrl":null,"url":null,"abstract":"<p><p>Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF<sub>4</sub>:Yb,Tm, with uniform morphology and high crystallinity, were prepared <i>via</i> a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |<i>g</i>callum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |<i>g</i>callum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |<i>g</i>callum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00966e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF4:Yb,Tm, with uniform morphology and high crystallinity, were prepared via a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |gcallum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |gcallum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |gcallum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.

含有 NaYF4:Yb,Tm UCNPs 的胆甾液晶聚合物网络的上转换圆偏振发光。
上转换圆偏振发光(UC-CPL)在防伪和显示领域具有广阔的应用前景。上转换纳米粒子(UCNPs)NaYF4:Yb,Tm 具有均匀的形态和高结晶度,是通过一种简单的溶热法制备的。这些 UCNPs 被嵌入到胆甾型液晶聚合物网络(CLCN)薄膜中。使用左旋和右旋圆偏振器研究了这些薄膜的 UC-CPL 性能。经过校准,独立的 CLCN-UCNPs 薄膜的|gcallum|值(高达 0.33),而 CLCN-UCNPs 涂层 PET 薄膜的|gcallum|值则达到了 0.43。此外,由 PMMA-UCNPs 层和 CLCN 层组成的组合系统产生了高达 1.73 的超大|gcallum|值。使用光掩膜制备出了柔韧的彩色图案 CLCN 薄膜,有望应用于防伪领域。这项研究不仅成功制备了基于 CLCNs 和 UCNPs 的 UC-CPL 活性材料,还证明了 CLCN 薄膜在上转换发光材料中的手性过滤效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信