Comparative In Vivo Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nina M M Peltokallio, Rubina Ajdary, Guillermo Reyes, Esko Kankuri, Jouni J T Junnila, Satu Kuure, Anna S Meller, Jani Kuula, Eija Raussi-Lehto, Hannu Sariola, Outi M Laitinen-Vapaavuori, Orlando J Rojas
{"title":"Comparative <i>In Vivo</i> Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models.","authors":"Nina M M Peltokallio, Rubina Ajdary, Guillermo Reyes, Esko Kankuri, Jouni J T Junnila, Satu Kuure, Anna S Meller, Jani Kuula, Eija Raussi-Lehto, Hannu Sariola, Outi M Laitinen-Vapaavuori, Orlando J Rojas","doi":"10.1021/acs.biomac.4c00984","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the increasing interest in cellulose-derived materials in biomedical research, there remains a significant gap in comprehensive <i>in vivo</i> analyses of cellulosic materials obtained from various sources and processing methods. To explore durable alternatives to synthetic medical meshes, we evaluated the <i>in vivo</i> biocompatibility of bacterial nanocellulose, regenerated cellulose, and cellulose nanofibrils in a subcutaneous transplantation model, alongside incumbent polypropylene and polydioxanone. Notably, this study demonstrates the <i>in vivo</i> biocompatibility of regenerated cellulose obtained through alkali dissolution and subsequent regeneration. All cellulose-derived implants triggered the expected foreign body response in the host tissue, characterized predominantly by macrophages and foreign body giant cells. Porous materials promoted cell ingrowth and biointegration. Our results highlight the potential of bacterial nanocellulose and regenerated cellulose as safe alternatives to commercial polypropylene meshes. However, the <i>in vivo</i> fragmentation observed for cellulose nanofibril meshes suggests the need for measures to optimize their processing and preparation.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00984","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the increasing interest in cellulose-derived materials in biomedical research, there remains a significant gap in comprehensive in vivo analyses of cellulosic materials obtained from various sources and processing methods. To explore durable alternatives to synthetic medical meshes, we evaluated the in vivo biocompatibility of bacterial nanocellulose, regenerated cellulose, and cellulose nanofibrils in a subcutaneous transplantation model, alongside incumbent polypropylene and polydioxanone. Notably, this study demonstrates the in vivo biocompatibility of regenerated cellulose obtained through alkali dissolution and subsequent regeneration. All cellulose-derived implants triggered the expected foreign body response in the host tissue, characterized predominantly by macrophages and foreign body giant cells. Porous materials promoted cell ingrowth and biointegration. Our results highlight the potential of bacterial nanocellulose and regenerated cellulose as safe alternatives to commercial polypropylene meshes. However, the in vivo fragmentation observed for cellulose nanofibril meshes suggests the need for measures to optimize their processing and preparation.

在皮下移植模型中比较纤维素衍生网片和合成网片的体内生物相容性
尽管生物医学研究对纤维素衍生材料的兴趣与日俱增,但对从不同来源和加工方法中获得的纤维素材料进行全面的体内分析仍然存在很大差距。为了探索合成医用网格布的耐用替代品,我们在皮下移植模型中评估了细菌纳米纤维素、再生纤维素和纤维素纳米纤维的体内生物相容性,以及现有聚丙烯和聚二氧杂蒽酮的生物相容性。值得注意的是,这项研究证明了通过碱溶解和再生获得的再生纤维素在体内的生物相容性。所有纤维素衍生植入物都会在宿主组织中引发预期的异物反应,主要表现为巨噬细胞和异物巨细胞。多孔材料促进了细胞的生长和生物整合。我们的研究结果凸显了细菌纳米纤维素和再生纤维素作为商用聚丙烯网的安全替代品的潜力。然而,观察到的纤维素纳米纤维网的体内碎裂表明,需要采取措施优化其加工和制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信