In-Situ Self-Respiratory Solid-to-Hydrogel Electrolyte Interface Evoked Well-Distributed Deposition on Zinc Anode for Highly Reversible Zinc-Ion Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Zhao, Zhiyuan Chen, Xuan Gao, Haobo Dong, Xiaoyu Zhao, Guanjie He, Hui Yang
{"title":"In-Situ Self-Respiratory Solid-to-Hydrogel Electrolyte Interface Evoked Well-Distributed Deposition on Zinc Anode for Highly Reversible Zinc-Ion Batteries","authors":"Yifan Zhao,&nbsp;Zhiyuan Chen,&nbsp;Xuan Gao,&nbsp;Haobo Dong,&nbsp;Xiaoyu Zhao,&nbsp;Guanjie He,&nbsp;Hui Yang","doi":"10.1002/anie.202415251","DOIUrl":null,"url":null,"abstract":"<p>The aqueous zinc-ion batteries (AZIB) have emerged as a promising technology in the realm of electrochemical energy storage. Despite its potential advantages in terms of safety, cost-effectiveness, and inherent safety, AZIB faces significant challenges. Issues attributed to unsupported thermodynamics and non-uniform potential distribution and deposition, present formidable obstacles that necessitate resolution. To tackle these challenges, a novel strategy adapting hybrid organic–inorganic in situ derived solid-to-hydrogel electrolyte interface (StHEI) has been developed from coordination reactions and self-respiratory process, establishing uniform diffusion channels by ion bridges and accelerating ion transport. Self-respiratory pattern of StHEI realized through in situ inorganic component conversion further prolongs the protecting duration, which effectively mitigates corrosion and passivation but enhance the mechanical properties of the StHEI measured through Young's modulus. This novel StHEI promotes well-distributed potential lines within the Helmholtz regions. Zn<sup>2+</sup> are finally induced to deposit and nucleate in a compact, fine, and uniform manner. Asymmetrical batteries assembled with the modified Zn electrode and bare Zn exhibit exceptional stability over 3000 h (1 mA cm<sup>−2</sup>–0.5 mAh cm<sup>−2</sup>). The asymmetrical Cu//Zn cell achieved an outstanding average Coulombic efficiency (CE) of 99.6 % over 1200 cycles.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 3","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202415251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202415251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous zinc-ion batteries (AZIB) have emerged as a promising technology in the realm of electrochemical energy storage. Despite its potential advantages in terms of safety, cost-effectiveness, and inherent safety, AZIB faces significant challenges. Issues attributed to unsupported thermodynamics and non-uniform potential distribution and deposition, present formidable obstacles that necessitate resolution. To tackle these challenges, a novel strategy adapting hybrid organic–inorganic in situ derived solid-to-hydrogel electrolyte interface (StHEI) has been developed from coordination reactions and self-respiratory process, establishing uniform diffusion channels by ion bridges and accelerating ion transport. Self-respiratory pattern of StHEI realized through in situ inorganic component conversion further prolongs the protecting duration, which effectively mitigates corrosion and passivation but enhance the mechanical properties of the StHEI measured through Young's modulus. This novel StHEI promotes well-distributed potential lines within the Helmholtz regions. Zn2+ are finally induced to deposit and nucleate in a compact, fine, and uniform manner. Asymmetrical batteries assembled with the modified Zn electrode and bare Zn exhibit exceptional stability over 3000 h (1 mA cm−2–0.5 mAh cm−2). The asymmetrical Cu//Zn cell achieved an outstanding average Coulombic efficiency (CE) of 99.6 % over 1200 cycles.

Abstract Image

原位自呼吸固体-水凝胶电解质界面诱发锌阳极上的良好分布沉积,实现锌离子电池的高可逆性
锌离子水电池(AZIB)已成为电化学储能领域一项前景广阔的技术。尽管 AZIB 在安全性、成本效益和固有安全性方面具有潜在优势,但它也面临着重大挑战。不支持热力学和不均匀的电势分布与沉积等问题带来了巨大的障碍,需要加以解决。为了应对这些挑战,我们从配位反应和自呼吸过程中开发出了一种新策略,即采用有机-无机混合原位衍生固体-水凝胶电解质界面(StHEI),通过离子桥建立均匀的扩散通道并加速离子传输。通过原位无机成分转换实现的 StHEI 自呼吸模式进一步延长了保护时间,从而有效减轻了腐蚀和钝化,并通过杨氏模量测量提高了 StHEI 的机械性能。这种新型 StHEI 促进了亥姆霍兹区域内电位线的良好分布。最终诱导 Zn2+ 以紧凑、精细和均匀的方式沉积和成核。用改性锌电极和裸锌组装的不对称电池在 3000 小时内(1 mA cm-2- 0.5 mAh cm-2)表现出卓越的稳定性。非对称铜/锌电池在 1200 次循环中实现了 99.6% 的出色平均库仑效率 (CE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信