Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Jiyong Bian, Xiaoqiang An, Jing Zhao, Yang Liao, Xianen Lan, Prof. Ruiping Liu, Prof. Chengzhi Hu, Prof. Jie-jie Chen, Huijuan Liu, Jiuhui Qu
{"title":"Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate","authors":"Dr. Jiyong Bian,&nbsp;Xiaoqiang An,&nbsp;Jing Zhao,&nbsp;Yang Liao,&nbsp;Xianen Lan,&nbsp;Prof. Ruiping Liu,&nbsp;Prof. Chengzhi Hu,&nbsp;Prof. Jie-jie Chen,&nbsp;Huijuan Liu,&nbsp;Jiuhui Qu","doi":"10.1002/anie.202412194","DOIUrl":null,"url":null,"abstract":"<p>Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the −C≡N groups at the edge of cyano-rich carbon nitride (g-C<sub>3</sub>N<sub>4</sub>-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (<i>cd</i><sub>1</sub>NiR) is inhibited due to the physiological distance limit of active sites (&gt;14 Å). By means of the directional electron transfer between g-C<sub>3</sub>N<sub>4</sub>-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N<sub>2</sub> to usable nitrite with an unprecedented selectivity of up to 95.3 %. The converted nitrite could be further utilized by anammox microbiota and dissimilatory nitrate reduction to ammonia (DNRA) microorganisms, doubling the efficiency of total nitrogen removal (96.5±2.3 %) for biological nitrogen removal and ammonia generation (12.6 mg NH<sub>4</sub><sup>+</sup>-N L<sup>−1</sup> h<sup>−1</sup>), respectively. Thus, our work paves an appealing way for the sustainable treatment and utilization of nitrate for ammonia fuel production by strategically regulating the electron transfer pathway across the biotic-abiotic interface.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412194","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the −C≡N groups at the edge of cyano-rich carbon nitride (g-C3N4-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (cd1NiR) is inhibited due to the physiological distance limit of active sites (>14 Å). By means of the directional electron transfer between g-C3N4-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N2 to usable nitrite with an unprecedented selectivity of up to 95.3 %. The converted nitrite could be further utilized by anammox microbiota and dissimilatory nitrate reduction to ammonia (DNRA) microorganisms, doubling the efficiency of total nitrogen removal (96.5±2.3 %) for biological nitrogen removal and ammonia generation (12.6 mg NH4+-N L−1 h−1), respectively. Thus, our work paves an appealing way for the sustainable treatment and utilization of nitrate for ammonia fuel production by strategically regulating the electron transfer pathway across the biotic-abiotic interface.

Abstract Image

用于选择性光生物催化转化硝酸盐的酶纳米生物混合体中的定向电子转移
半人工光合作用系统(SAPS)将酶或细胞生物体与光吸收半导体结合在一起,已成为一种极具吸引力的氮转化方法,但也面临着反应途径调控的挑战。在这里,我们发现光电子可以从富氰氮化碳(g-C3N4-CN)边缘的-C≡N基团转移到硝酸还原酶(NarGH),而由于活性位点的生理距离限制(> 14 Å),电子直接转移到亚硝酸还原酶(cd1NiR)受到抑制。通过 g-C3N4-CN 与提取的生物酶之间的定向电子转移,脱硝反应的产物从惰性 N2 转化为可用的亚硝酸盐,其选择性高达 95.3%,这是前所未有的。转化后的亚硝酸盐可进一步被厌氧微生物群和异纤硝酸盐还原成氨(DNRA)微生物利用,使生物脱氮和氨生成(12.6 mg NH4+-N L-1 h-1)的总脱氮效率分别提高了一倍(96.5 ± 2.3 %)。因此,我们的工作为可持续处理和利用硝酸盐生产氨燃料铺平了一条具有吸引力的道路,方法是战略性地调节生物-非生物界面上的电子传递途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信