Allison E. Wolder, Christian M. Heckmann, Peter-Leon Hagedoorn, Diederik J. Opperman, Caroline E. Paul
{"title":"Asymmetric Monoreduction of α,β-Dicarbonyls to α-Hydroxy Carbonyls by Ene Reductases","authors":"Allison E. Wolder, Christian M. Heckmann, Peter-Leon Hagedoorn, Diederik J. Opperman, Caroline E. Paul","doi":"10.1021/acscatal.4c04676","DOIUrl":null,"url":null,"abstract":"Ene reductases (EREDs) catalyze asymmetric reduction with exquisite chemo-, stereo-, and regioselectivity. Recent discoveries led to unlocking other types of reactivities toward oxime reduction and reductive C–C bond formation. Exploring nontypical reactions can further expand the biocatalytic knowledgebase, and evidence alludes to yet another variant reaction where flavin mononucleotide (FMN)-bound ERs from the old yellow enzyme family (OYE) have unconventional activity with α,β-dicarbonyl substrates. In this study, we demonstrate the nonconventional stereoselective monoreduction of α,β-dicarbonyl to the corresponding chiral hydroxycarbonyl, which are valuable building blocks for asymmetric synthesis. We explored ten α,β-dicarbonyl aliphatic, cyclic, or aromatic compounds and tested their reduction with five OYEs and one nonflavin-dependent double bond reductase (DBR). Only GluER reduced aliphatic α,β-dicarbonyls, with up to 19% conversion of 2,3-hexanedione to 2-hydroxyhexan-3-one with an <i>R</i>-selectivity of 83% <i>ee</i>. The best substrate was the aromatic α,β-dicarbonyl 1-phenyl-1,2-propanedione, with 91% conversion to phenylacetylcarbinol using OYE3 with <i>R</i>-selectivity >99.9% <i>ee</i>. Michaelis–Menten kinetics for 1-phenyl-1,2-propanedione with OYE3 gave a turnover <i>k</i><sub>cat</sub> of 0.71 ± 0.03 s<sup>–1</sup> and a <i>K</i><sub>m</sub> of 2.46 ± 0.25 mM. Twenty-four EREDs from multiple classes of OYEs and DBRs were further screened on 1-phenyl-1,2-propanedione, showing that class II OYEs (OYE3-like) have the best overall selectivity and conversion. EPR studies detected no radical signal, whereas NMR studies with deuterium labeling indicate proton incorporation at the benzylic carbonyl carbon from the solvent and not the FMN hydride. A crystal structure of OYE2 with 1.5 Å resolution was obtained, and docking studies showed a productive pose with the substrate.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ene reductases (EREDs) catalyze asymmetric reduction with exquisite chemo-, stereo-, and regioselectivity. Recent discoveries led to unlocking other types of reactivities toward oxime reduction and reductive C–C bond formation. Exploring nontypical reactions can further expand the biocatalytic knowledgebase, and evidence alludes to yet another variant reaction where flavin mononucleotide (FMN)-bound ERs from the old yellow enzyme family (OYE) have unconventional activity with α,β-dicarbonyl substrates. In this study, we demonstrate the nonconventional stereoselective monoreduction of α,β-dicarbonyl to the corresponding chiral hydroxycarbonyl, which are valuable building blocks for asymmetric synthesis. We explored ten α,β-dicarbonyl aliphatic, cyclic, or aromatic compounds and tested their reduction with five OYEs and one nonflavin-dependent double bond reductase (DBR). Only GluER reduced aliphatic α,β-dicarbonyls, with up to 19% conversion of 2,3-hexanedione to 2-hydroxyhexan-3-one with an R-selectivity of 83% ee. The best substrate was the aromatic α,β-dicarbonyl 1-phenyl-1,2-propanedione, with 91% conversion to phenylacetylcarbinol using OYE3 with R-selectivity >99.9% ee. Michaelis–Menten kinetics for 1-phenyl-1,2-propanedione with OYE3 gave a turnover kcat of 0.71 ± 0.03 s–1 and a Km of 2.46 ± 0.25 mM. Twenty-four EREDs from multiple classes of OYEs and DBRs were further screened on 1-phenyl-1,2-propanedione, showing that class II OYEs (OYE3-like) have the best overall selectivity and conversion. EPR studies detected no radical signal, whereas NMR studies with deuterium labeling indicate proton incorporation at the benzylic carbonyl carbon from the solvent and not the FMN hydride. A crystal structure of OYE2 with 1.5 Å resolution was obtained, and docking studies showed a productive pose with the substrate.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.