Dynamic mechanical response and deformation-induced co-axial nanocrystalline grains facilitating crack formation in magnesium-yttrium alloy

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Shuang Yang, Fei Liu, Fei Chen, Yuan-Biao Tan, Hao Fu, Si-Yuan Wei, Song Xiang
{"title":"Dynamic mechanical response and deformation-induced co-axial nanocrystalline grains facilitating crack formation in magnesium-yttrium alloy","authors":"Shuang Yang, Fei Liu, Fei Chen, Yuan-Biao Tan, Hao Fu, Si-Yuan Wei, Song Xiang","doi":"10.1016/j.jma.2024.09.011","DOIUrl":null,"url":null,"abstract":"The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar (SHPB) impact, and the microstructure evolution and crack formation mechanism were revealed. The yield strength and work hardening rate increase significantly with increasing impact strain rate. Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing. Contrary to crack initiation mechanism facilitated by adiabatic shear bands, we find that high-density co-axial nanocrystalline grains form near cracks, which leads to local softening and promotes crack initiation and rapid propagation. Most grains have similar <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x3008;&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x3009;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2921 1196.3\" width=\"6.784ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use is=\"true\" xlink:href=\"#MJMAIN-27E8\"></use><g is=\"true\" transform=\"translate(389,0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(570,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(1071,0)\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1641,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g></g><use is=\"true\" x=\"2531\" xlink:href=\"#MJMAIN-27E9\" y=\"0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">〈</mo><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">0</mn></mrow><mo is=\"true\">〉</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">〈</mo><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">0</mn></mrow><mo is=\"true\">〉</mo></mrow></math></script></span> orientations, with unique misorientation of 24°, 32°, 62°, 78° and 90° between adjacent grains, suggesting that these grains are primarily formed by interface transformation, which exhibits distinct differences from recrystallized grains. Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.09.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar (SHPB) impact, and the microstructure evolution and crack formation mechanism were revealed. The yield strength and work hardening rate increase significantly with increasing impact strain rate. Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing. Contrary to crack initiation mechanism facilitated by adiabatic shear bands, we find that high-density co-axial nanocrystalline grains form near cracks, which leads to local softening and promotes crack initiation and rapid propagation. Most grains have similar 1¯21¯0 orientations, with unique misorientation of 24°, 32°, 62°, 78° and 90° between adjacent grains, suggesting that these grains are primarily formed by interface transformation, which exhibits distinct differences from recrystallized grains. Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.

Abstract Image

促进镁钇合金裂纹形成的动态机械响应和变形诱导的同轴纳米晶粒
采用劈裂-霍普金森压力棒(SHPB)冲击法研究了镁钇合金在高应变速率下的动态力学响应和变形机理,揭示了微观结构演变和裂纹形成机理。屈服强度和加工硬化率随冲击应变率的增加而显著提高。变形孪晶和非基底位错滑移是测试过程中的主要变形机制。与绝热剪切带促进的裂纹萌发机制相反,我们发现高密度同轴纳米晶粒在裂纹附近形成,从而导致局部软化并促进裂纹萌发和快速扩展。大多数晶粒具有相似的〈1¯21¯0〉〈1¯21¯0〉取向,相邻晶粒之间存在 24°、32°、62°、78° 和 90°的独特错向,表明这些晶粒主要由界面转化形成,与再结晶晶粒存在明显差异。我们的研究结果揭示了镁合金在冲击变形下的动态机械响应和裂纹形成机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信