Daewon Koo, Navdeep Godara, Juan R. Romero Cubas, Shawn D. Askew
{"title":"A method to spatially assess multipass spray deposition patterns via UV fluorescence and weed population shifts","authors":"Daewon Koo, Navdeep Godara, Juan R. Romero Cubas, Shawn D. Askew","doi":"10.1002/csc2.21377","DOIUrl":null,"url":null,"abstract":"<p>Spray deposition patterns from agricultural sprayers are traditionally sampled discretely along a field transect accounting for 0.5% or less of the treated area. Such methods may not fully capture the dimensional variability inherent in large-scale, multiple-pass spray applications, especially evident from an agricultural spray drone (ASD). This study investigated the utilization of UV-fluorescent dye and nighttime aerial imaging techniques to assess large-scale, multipass spray deposition patterns. Accuracy of digital hue from UV-fluorescent photography to predict deposition of proxy dye was confirmed via fluorometry assessed intensity levels of extracted UV-fluorescent dye from 384 Petri dishes placed prior to treatment. Results showed that ASD applications, regardless of nozzle type, exhibited greater spatial variability within the target area compared to ride-on sprayer applications, primarily due to overapplication. Additionally, the ASD generated spray drift to adjacent nontarget areas that was at least three times more than that of ride-on and spray-gun sprayers. Multipass deposition was further assessed via in situ smooth crabgrass infestation following treatment with quinclorac or topramezone by multipass ASD or hand-held, four-nozzle spray boom. Weed infestation annotated from overlaid grids with 9.3-dm<sup>2</sup> ground resolution inconsistently detected spatial heterogeneity between transects assessed along the center and edge of each sprayer pass. The ASD controlled smooth crabgrass 11% more than the hand-held sprayer, albeit with an 18% increase in spray drift to nontarget areas, similar to the UV-fluorescence study. Digitally assessed average hue of fluorescence photography appears to be a viable method to assess multidimensional and continuous spatial relationships of spray deposition.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.21377","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.21377","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Spray deposition patterns from agricultural sprayers are traditionally sampled discretely along a field transect accounting for 0.5% or less of the treated area. Such methods may not fully capture the dimensional variability inherent in large-scale, multiple-pass spray applications, especially evident from an agricultural spray drone (ASD). This study investigated the utilization of UV-fluorescent dye and nighttime aerial imaging techniques to assess large-scale, multipass spray deposition patterns. Accuracy of digital hue from UV-fluorescent photography to predict deposition of proxy dye was confirmed via fluorometry assessed intensity levels of extracted UV-fluorescent dye from 384 Petri dishes placed prior to treatment. Results showed that ASD applications, regardless of nozzle type, exhibited greater spatial variability within the target area compared to ride-on sprayer applications, primarily due to overapplication. Additionally, the ASD generated spray drift to adjacent nontarget areas that was at least three times more than that of ride-on and spray-gun sprayers. Multipass deposition was further assessed via in situ smooth crabgrass infestation following treatment with quinclorac or topramezone by multipass ASD or hand-held, four-nozzle spray boom. Weed infestation annotated from overlaid grids with 9.3-dm2 ground resolution inconsistently detected spatial heterogeneity between transects assessed along the center and edge of each sprayer pass. The ASD controlled smooth crabgrass 11% more than the hand-held sprayer, albeit with an 18% increase in spray drift to nontarget areas, similar to the UV-fluorescence study. Digitally assessed average hue of fluorescence photography appears to be a viable method to assess multidimensional and continuous spatial relationships of spray deposition.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.