Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers

IF 20.6 Q1 OPTICS
Haifeng Wu, Xiao Lin, Qin Shuai, Youliang Zhu, Yi Fu, Xiaoqin Liao, Yazhou Wang, Yizhe Wang, Chaowei Cheng, Yong Liu, Lei Sun, Xinyi Luo, Xiaoli Zhu, Liancheng Wang, Ziwei Li, Xiao Wang, Dong Li, Anlian Pan
{"title":"Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers","authors":"Haifeng Wu, Xiao Lin, Qin Shuai, Youliang Zhu, Yi Fu, Xiaoqin Liao, Yazhou Wang, Yizhe Wang, Chaowei Cheng, Yong Liu, Lei Sun, Xinyi Luo, Xiaoli Zhu, Liancheng Wang, Ziwei Li, Xiao Wang, Dong Li, Anlian Pan","doi":"10.1038/s41377-024-01639-3","DOIUrl":null,"url":null,"abstract":"<p>Owing to high pixel density and brightness, gallium nitride (GaN) based micro-light-emitting diodes (Micro-LEDs) are considered revolutionary display technology and have important application prospects in the fields of micro-display and virtual display. However, Micro-LEDs with pixel sizes smaller than 10 μm still encounter technical challenges such as sidewall damage and limited light extraction efficiency, resulting in reduced luminous efficiency and severe brightness non-uniformity. Here, we reported high-brightness green Micro-displays with a 5 μm pixel utilizing high-quality GaN-on-Si epilayers. Four-inch wafer-scale uniform green GaN epilayer is first grown on silicon substrate, which possesses a low dislocation density of 5.25 × 10<sup>8</sup> cm<sup>−</sup><sup>2</sup>, small wafer bowing of 16.7 μm, and high wavelength uniformity (standard deviation STDEV &lt; 1 nm), scalable to 6-inch sizes. Based on the high-quality GaN epilayers, green Micro-LEDs with 5 μm pixel sizes are designed with vertical non-alignment bonding technology. An atomic sidewall passivation method combined with wet treatment successfully addressed the Micro-LED sidewall damages and steadily produced nano-scale surface textures on the pixel top, which unlocked the internal quantum efficiency of the high-quality green GaN-on-Si epi-wafer. Ultra-high brightness exceeding 10<sup>7</sup> cd/m<sup>2</sup> (nits) is thus achieved in the green Micro-LEDs, marking the highest reported results. Furthermore, integration of Micro-LEDs with Si-based CMOS circuits enables the realization of green Micro-LED displays with resolution up to 1080 × 780, realizing high-definition playback of movies and images. This work lays the foundation for the mass production of high-brightness Micro-LED displays on large-size GaN-on-Si epi-wafers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01639-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to high pixel density and brightness, gallium nitride (GaN) based micro-light-emitting diodes (Micro-LEDs) are considered revolutionary display technology and have important application prospects in the fields of micro-display and virtual display. However, Micro-LEDs with pixel sizes smaller than 10 μm still encounter technical challenges such as sidewall damage and limited light extraction efficiency, resulting in reduced luminous efficiency and severe brightness non-uniformity. Here, we reported high-brightness green Micro-displays with a 5 μm pixel utilizing high-quality GaN-on-Si epilayers. Four-inch wafer-scale uniform green GaN epilayer is first grown on silicon substrate, which possesses a low dislocation density of 5.25 × 108 cm2, small wafer bowing of 16.7 μm, and high wavelength uniformity (standard deviation STDEV < 1 nm), scalable to 6-inch sizes. Based on the high-quality GaN epilayers, green Micro-LEDs with 5 μm pixel sizes are designed with vertical non-alignment bonding technology. An atomic sidewall passivation method combined with wet treatment successfully addressed the Micro-LED sidewall damages and steadily produced nano-scale surface textures on the pixel top, which unlocked the internal quantum efficiency of the high-quality green GaN-on-Si epi-wafer. Ultra-high brightness exceeding 107 cd/m2 (nits) is thus achieved in the green Micro-LEDs, marking the highest reported results. Furthermore, integration of Micro-LEDs with Si-based CMOS circuits enables the realization of green Micro-LED displays with resolution up to 1080 × 780, realizing high-definition playback of movies and images. This work lays the foundation for the mass production of high-brightness Micro-LED displays on large-size GaN-on-Si epi-wafers.

Abstract Image

采用晶圆级均匀硅基氮化镓外延层的超高亮度 Micro-LED
基于氮化镓(GaN)的微型发光二极管(Micro-LED)具有像素密度高、亮度高的特点,被认为是革命性的显示技术,在微型显示和虚拟显示领域具有重要的应用前景。然而,像素尺寸小于 10 μm 的 Micro-LED 仍面临侧壁损坏和光提取效率有限等技术挑战,导致发光效率降低和亮度严重不均匀。在此,我们报告了采用高质量硅基氮化镓外延层、像素为 5 μm 的高亮度绿色微型显示器。硅衬底具有 5.25 × 108 cm-2 的低位错密度、16.7 μm 的小硅片弯曲度和高波长均匀性(标准偏差 STDEV < 1 nm),可扩展至 6 英寸尺寸。在高质量氮化镓外延层的基础上,采用垂直无对准键合技术设计出了像素尺寸为 5 μm 的绿色 Micro-LED。原子侧壁钝化方法与湿处理相结合,成功解决了 Micro-LED 侧壁损伤问题,并在像素顶部稳定生成了纳米级表面纹理,从而释放了高质量绿色硅基氮化镓外延片的内部量子效率。因此,绿色 Micro-LED 实现了超过 107 cd/m2(尼特)的超高亮度,这是目前报道的最高亮度。此外,Micro-LED 与硅基 CMOS 电路的集成使绿色 Micro-LED 显示屏的分辨率达到 1080 × 780,实现了电影和图像的高清播放。这项工作为在大尺寸硅基氮化镓外延片上量产高亮度 Micro-LED 显示屏奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信