Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohe Tian, Li Cao, Keming Zhang, Rui Zhang, Xueqin Li, Chongshan Yin, Shaofei Wang
{"title":"Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations","authors":"Xiaohe Tian,&nbsp;Li Cao,&nbsp;Keming Zhang,&nbsp;Rui Zhang,&nbsp;Xueqin Li,&nbsp;Chongshan Yin,&nbsp;Shaofei Wang","doi":"10.1002/anie.202416864","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) exhibit considerable potential in gas separations owing to their remarkable stability and tunable pore structures. Nevertheless, their application as gas separation membranes is hindered by limited size-sieving capabilities and poor processability. In this study, we propose a novel molecular weaving strategy that combines hydroxyl polymers and 2D TpPa−SO<sub>3</sub>H COF nanosheets, achieving high gas separation efficiency. Driven by the strong electrostatic interactions, the hydroxyl chains thread through the COF pores, effectively weaving and assembling the composites to achieve exceptional flexibility and high mechanical strength. The penetrated chains also reduce the effective pore size of COFs, and combined with the “secondary confinement effect” stemming from abundant CO<sub>2</sub> sorption sites in the channels, the PVA@TpPa−SO<sub>3</sub>H membrane demonstrates a remarkable H<sub>2</sub> permeance of 1267.3 GPU and an H<sub>2</sub>/CO<sub>2</sub> selectivity of 43, surpassing the 2008 Robson upper bound limit. This facile strategy holds promise for the manufacture of large-area COF-based membranes for small-sized gas separations.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 4","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) exhibit considerable potential in gas separations owing to their remarkable stability and tunable pore structures. Nevertheless, their application as gas separation membranes is hindered by limited size-sieving capabilities and poor processability. In this study, we propose a novel molecular weaving strategy that combines hydroxyl polymers and 2D TpPa−SO3H COF nanosheets, achieving high gas separation efficiency. Driven by the strong electrostatic interactions, the hydroxyl chains thread through the COF pores, effectively weaving and assembling the composites to achieve exceptional flexibility and high mechanical strength. The penetrated chains also reduce the effective pore size of COFs, and combined with the “secondary confinement effect” stemming from abundant CO2 sorption sites in the channels, the PVA@TpPa−SO3H membrane demonstrates a remarkable H2 permeance of 1267.3 GPU and an H2/CO2 selectivity of 43, surpassing the 2008 Robson upper bound limit. This facile strategy holds promise for the manufacture of large-area COF-based membranes for small-sized gas separations.

Abstract Image

通过分子编织实现用于高效气体分离的柔性共价有机框架膜
共价有机框架(COFs)因其卓越的稳定性和可调整的孔隙结构,在气体分离方面具有相当大的潜力。然而,它们作为气体分离膜的应用却因尺寸筛分能力有限和加工性差而受到阻碍。在本研究中,我们提出了一种新型分子编织策略,将羟基聚合物和二维 TpPa-SO3H COF 纳米片材结合在一起,实现了较高的气体分离效率。在强静电相互作用的驱动下,羟基链穿过 COF 孔隙,有效地编织和组装了复合材料,从而实现了优异的柔韧性和高机械强度。穿透的羟基链还减小了 COF 的有效孔径,再加上通道中丰富的 CO2 吸附位点所产生的 "二次封闭效应",PVA@TpPa-SO3H 膜的 H2 渗透率高达 1267.3 GPU,H2/CO2 选择性为 43,超过了 2008 年罗布森上限。这种简便的策略为制造用于小型气体分离的基于 COF 的大面积膜带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信