Alicia Huerta-Chagoya, Philip Schroeder, Ravi Mandla, Jiang Li, Lowri Morris, Maheak Vora, Ahmed Alkanaq, Dorka Nagy, Lukasz Szczerbinski, Jesper G. S. Madsen, Silvia Bonàs-Guarch, Fanny Mollandin, Joanne B. Cole, Bianca Porneala, Kenneth Westerman, Josephine H. Li, Toni I. Pollin, Jose C. Florez, Anna L. Gloyn, David J. Carey, Inês Cebola, Uyenlinh L. Mirshahi, Alisa K. Manning, Aaron Leong, Miriam Udler, Josep M. Mercader
{"title":"Rare variant analyses in 51,256 type 2 diabetes cases and 370,487 controls reveal the pathogenicity spectrum of monogenic diabetes genes","authors":"Alicia Huerta-Chagoya, Philip Schroeder, Ravi Mandla, Jiang Li, Lowri Morris, Maheak Vora, Ahmed Alkanaq, Dorka Nagy, Lukasz Szczerbinski, Jesper G. S. Madsen, Silvia Bonàs-Guarch, Fanny Mollandin, Joanne B. Cole, Bianca Porneala, Kenneth Westerman, Josephine H. Li, Toni I. Pollin, Jose C. Florez, Anna L. Gloyn, David J. Carey, Inês Cebola, Uyenlinh L. Mirshahi, Alisa K. Manning, Aaron Leong, Miriam Udler, Josep M. Mercader","doi":"10.1038/s41588-024-01947-9","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes (T2D) genome-wide association studies (GWASs) often overlook rare variants as a result of previous imputation panels’ limitations and scarce whole-genome sequencing (WGS) data. We used TOPMed imputation and WGS to conduct the largest T2D GWAS meta-analysis involving 51,256 cases of T2D and 370,487 controls, targeting variants with a minor allele frequency as low as 5 × 10−5. We identified 12 new variants, including a rare African/African American-enriched enhancer variant near the LEP gene (rs147287548), associated with fourfold increased T2D risk. We also identified a rare missense variant in HNF4A (p.Arg114Trp), associated with eightfold increased T2D risk, previously reported in maturity-onset diabetes of the young with reduced penetrance, but observed here in a T2D GWAS. We further leveraged these data to analyze 1,634 ClinVar variants in 22 genes related to monogenic diabetes, identifying two additional rare variants in HNF1A and GCK associated with fivefold and eightfold increased T2D risk, respectively, the effects of which were modified by the individual’s polygenic risk score. For 21% of the variants with conflicting interpretations or uncertain significance in ClinVar, we provided support of being benign based on their lack of association with T2D. Our work provides a framework for using rare variant GWASs to identify large-effect variants and assess variant pathogenicity in monogenic diabetes genes. Rare variant analyses identify a new type 2 diabetes risk allele near the LEP gene, which encodes leptin, and other risk alleles of intermediate penetrance in genes previously implicated in monogenic forms of diabetes.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 11","pages":"2370-2379"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01947-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01947-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) genome-wide association studies (GWASs) often overlook rare variants as a result of previous imputation panels’ limitations and scarce whole-genome sequencing (WGS) data. We used TOPMed imputation and WGS to conduct the largest T2D GWAS meta-analysis involving 51,256 cases of T2D and 370,487 controls, targeting variants with a minor allele frequency as low as 5 × 10−5. We identified 12 new variants, including a rare African/African American-enriched enhancer variant near the LEP gene (rs147287548), associated with fourfold increased T2D risk. We also identified a rare missense variant in HNF4A (p.Arg114Trp), associated with eightfold increased T2D risk, previously reported in maturity-onset diabetes of the young with reduced penetrance, but observed here in a T2D GWAS. We further leveraged these data to analyze 1,634 ClinVar variants in 22 genes related to monogenic diabetes, identifying two additional rare variants in HNF1A and GCK associated with fivefold and eightfold increased T2D risk, respectively, the effects of which were modified by the individual’s polygenic risk score. For 21% of the variants with conflicting interpretations or uncertain significance in ClinVar, we provided support of being benign based on their lack of association with T2D. Our work provides a framework for using rare variant GWASs to identify large-effect variants and assess variant pathogenicity in monogenic diabetes genes. Rare variant analyses identify a new type 2 diabetes risk allele near the LEP gene, which encodes leptin, and other risk alleles of intermediate penetrance in genes previously implicated in monogenic forms of diabetes.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution