Keith O. Fuglie, Thomas W. Hertel, David B. Lobell, Nelson B. Villoria
{"title":"Agricultural Productivity and Climate Mitigation","authors":"Keith O. Fuglie, Thomas W. Hertel, David B. Lobell, Nelson B. Villoria","doi":"10.1146/annurev-resource-101323-094349","DOIUrl":null,"url":null,"abstract":"Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective (<US$30 per ton carbon dioxide) and large-scale emissions reductions. Innovations that target specific commodities or inputs could even further reduce the cost of climate mitigation in agriculture.","PeriodicalId":48856,"journal":{"name":"Annual Review of Resource Economics","volume":"54 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Resource Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1146/annurev-resource-101323-094349","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture will play a central role in meeting greenhouse gas (GHG) emission targets, as the sector currently contributes ∼22% of global emissions. Because emissions are directly tied to resources employed in farm production, such as land, fertilizer, and ruminant animals, the productivity of input use tends to be inversely related to emissions intensity. We review evidence on how productivity gains in agriculture have contributed to historical changes in emissions, how they affect land use emissions both locally and globally, and how investments in research and development (R&D) affect productivity and therefore emissions. The world average agricultural emissions intensity fell by more than half since 1990, with a strong correlation between a region's agricultural productivity growth and reduction in emissions intensity. Additional investment in agricultural R&D offers an opportunity for cost-effective (<US$30 per ton carbon dioxide) and large-scale emissions reductions. Innovations that target specific commodities or inputs could even further reduce the cost of climate mitigation in agriculture.
期刊介绍:
The Annual Review of Resource Economics provides authoritative critical reviews evaluating the most significant research developments in resource economics, focusing on agricultural economics, environmental economics, renewable resources, and exhaustible resources.