Fusong Kang, Qingjie Wang, Dongfeng Du, Linxiao Wu, Daniel Wun Fung Cheung, Jingshan Luo
{"title":"Photoelectrochemical Ethylene Glycol Oxidization Coupled with Hydrogen Generation Using Metal Oxide Photoelectrodes","authors":"Fusong Kang, Qingjie Wang, Dongfeng Du, Linxiao Wu, Daniel Wun Fung Cheung, Jingshan Luo","doi":"10.1002/anie.202417648","DOIUrl":null,"url":null,"abstract":"<p>Photoelectrochemical (PEC) water splitting represents a promising approach for harnessing solar energy and transforming it into storable hydrogen. However, the complicated 4-electron transfer process of water oxidation reaction imposes kinetic limitations on the overall efficiency. Herein, we proposed a strategy by substituting water oxidation with the oxidation of ethylene glycol (EG), which is a hydrolysis byproduct of polyethylene terephthalate (PET) plastic waste. To achieve this, we developed and synthesized BiVO<sub>4</sub>/NiCo-LDH photoanodes capable of achieving a high Faradaic efficiency (FE) exceeding 85 % for the oxidation of EG to formate in a strongly alkaline environment. The reaction mechanism was further elucidated using in situ FTIR spectroscopy. Additionally, we successfully constructed an unassisted PEC device for EG oxidation and hydrogen generation by pairing the translucent Mo : BiVO<sub>4</sub>/NiCo-LDH photoanode with a state-of-the-art Cu<sub>2</sub>O photocathode, resulting in an approximate photocurrent density of 2.3 mA/cm<sup>2</sup>. Our research not only offers a PEC pathway for converting PET plastics into valuable chemicals but also enables simultaneous hydrogen production.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrochemical (PEC) water splitting represents a promising approach for harnessing solar energy and transforming it into storable hydrogen. However, the complicated 4-electron transfer process of water oxidation reaction imposes kinetic limitations on the overall efficiency. Herein, we proposed a strategy by substituting water oxidation with the oxidation of ethylene glycol (EG), which is a hydrolysis byproduct of polyethylene terephthalate (PET) plastic waste. To achieve this, we developed and synthesized BiVO4/NiCo-LDH photoanodes capable of achieving a high Faradaic efficiency (FE) exceeding 85 % for the oxidation of EG to formate in a strongly alkaline environment. The reaction mechanism was further elucidated using in situ FTIR spectroscopy. Additionally, we successfully constructed an unassisted PEC device for EG oxidation and hydrogen generation by pairing the translucent Mo : BiVO4/NiCo-LDH photoanode with a state-of-the-art Cu2O photocathode, resulting in an approximate photocurrent density of 2.3 mA/cm2. Our research not only offers a PEC pathway for converting PET plastics into valuable chemicals but also enables simultaneous hydrogen production.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.