Generating normative data from web-based administration of the Cambridge Neuropsychological Test Automated Battery using a Bayesian framework.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.3389/fdgth.2024.1294222
Elizabeth Wragg, Caroline Skirrow, Pasquale Dente, Jack Cotter, Peter Annas, Milly Lowther, Rosa Backx, Jenny Barnett, Fiona Cree, Jasmin Kroll, Francesca Cormack
{"title":"Generating normative data from web-based administration of the Cambridge Neuropsychological Test Automated Battery using a Bayesian framework.","authors":"Elizabeth Wragg, Caroline Skirrow, Pasquale Dente, Jack Cotter, Peter Annas, Milly Lowther, Rosa Backx, Jenny Barnett, Fiona Cree, Jasmin Kroll, Francesca Cormack","doi":"10.3389/fdgth.2024.1294222","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Normative cognitive data can distinguish impairment from healthy cognitive function and pathological decline from normal ageing. Traditional methods for deriving normative data typically require extremely large samples of healthy participants, stratifying test variation by pre-specified age groups and key demographic features (age, sex, education). Linear regression approaches can provide normative data from more sparsely sampled datasets, but non-normal distributions of many cognitive test results may lead to violation of model assumptions, limiting generalisability.</p><p><strong>Method: </strong>The current study proposes a novel Bayesian framework for normative data generation. Participants (<i>n</i> = 728; 368 male and 360 female, age 18-75 years), completed the Cambridge Neuropsychological Test Automated Battery via the research crowdsourcing website Prolific.ac. Participants completed tests of visuospatial recognition memory (Spatial Working Memory test), visual episodic memory (Paired Associate Learning test) and sustained attention (Rapid Visual Information Processing test). Test outcomes were modelled as a function of age using Bayesian Generalised Linear Models, which were able to derive posterior distributions of the authentic data, drawing from a wide family of distributions. Markov Chain Monte Carlo algorithms generated a large synthetic dataset from posterior distributions for each outcome measure, capturing normative distributions of cognition as a function of age, sex and education.</p><p><strong>Results: </strong>Comparison with stratified and linear regression methods showed converging results, with the Bayesian approach producing similar age, sex and education trends in the data, and similar categorisation of individual performance levels.</p><p><strong>Conclusion: </strong>This study documents a novel, reproducible and robust method for describing normative cognitive performance with ageing using a large dataset.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1294222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Normative cognitive data can distinguish impairment from healthy cognitive function and pathological decline from normal ageing. Traditional methods for deriving normative data typically require extremely large samples of healthy participants, stratifying test variation by pre-specified age groups and key demographic features (age, sex, education). Linear regression approaches can provide normative data from more sparsely sampled datasets, but non-normal distributions of many cognitive test results may lead to violation of model assumptions, limiting generalisability.

Method: The current study proposes a novel Bayesian framework for normative data generation. Participants (n = 728; 368 male and 360 female, age 18-75 years), completed the Cambridge Neuropsychological Test Automated Battery via the research crowdsourcing website Prolific.ac. Participants completed tests of visuospatial recognition memory (Spatial Working Memory test), visual episodic memory (Paired Associate Learning test) and sustained attention (Rapid Visual Information Processing test). Test outcomes were modelled as a function of age using Bayesian Generalised Linear Models, which were able to derive posterior distributions of the authentic data, drawing from a wide family of distributions. Markov Chain Monte Carlo algorithms generated a large synthetic dataset from posterior distributions for each outcome measure, capturing normative distributions of cognition as a function of age, sex and education.

Results: Comparison with stratified and linear regression methods showed converging results, with the Bayesian approach producing similar age, sex and education trends in the data, and similar categorisation of individual performance levels.

Conclusion: This study documents a novel, reproducible and robust method for describing normative cognitive performance with ageing using a large dataset.

利用贝叶斯框架从剑桥神经心理测试自动化电池的网络管理中生成标准数据。
简介常模认知数据可以区分认知功能障碍与健康认知功能,以及病理衰退与正常衰老。获取常模数据的传统方法通常需要对健康参与者进行大量抽样,并按预先指定的年龄组和主要人口特征(年龄、性别、教育程度)对测试变化进行分层。线性回归方法可以从取样更稀少的数据集中提供常模数据,但许多认知测试结果的非正态分布可能会导致违反模型假设,从而限制了普适性:本研究提出了一种用于生成常模数据的新型贝叶斯框架。参与者(n = 728;男性 368 人,女性 360 人,年龄 18-75 岁)通过研究众包网站 Prolific.ac 完成了剑桥神经心理测试自动化电池。参与者完成了视觉空间识别记忆测试(空间工作记忆测试)、视觉外显记忆测试(配对联想学习测试)和持续注意力测试(快速视觉信息处理测试)。使用贝叶斯广义线性模型将测试结果作为年龄的函数进行建模,该模型能够从多种分布中得出真实数据的后验分布。马尔可夫链蒙特卡洛算法根据每项结果测量的后验分布生成了一个大型合成数据集,捕捉到了作为年龄、性别和教育函数的认知常模分布:结果:与分层回归法和线性回归法的比较显示结果趋同,贝叶斯方法在数据中产生了相似的年龄、性别和教育趋势,并对个人表现水平进行了相似的分类:本研究利用大型数据集记录了一种新颖、可重复和稳健的方法,用于描述随着年龄增长的正常认知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信