Jordana Borges Camargo Diniz , Laís Silva Santana , Marianna Leite , João Lucas Silva Santana , Sarah Isabela Magalhães Costa , Luiz Henrique Martins Castro , João Paulo Mota Telles
{"title":"Advancing epilepsy diagnosis: A meta-analysis of artificial intelligence approaches for interictal epileptiform discharge detection","authors":"Jordana Borges Camargo Diniz , Laís Silva Santana , Marianna Leite , João Lucas Silva Santana , Sarah Isabela Magalhães Costa , Luiz Henrique Martins Castro , João Paulo Mota Telles","doi":"10.1016/j.seizure.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are an important biomarker for epilepsy. Currently, the gold standard for IED detection is the visual analysis performed by experts. However, this process is expert-biased, and time-consuming. Developing fast, accurate, and robust detection methods for IEDs based on EEG may facilitate epilepsy diagnosis. We aim to assess the performance of deep learning (DL) and classic machine learning (ML) algorithms in classifying EEG segments into IED and non-IED categories, as well as distinguishing whether the entire EEG contains IED or not.</div></div><div><h3>Methods</h3><div>We systematically searched PubMed, Embase, and Web of Science following PRISMA guidelines. We excluded studies that only performed the detection of IEDs instead of binary segment classification. Risk of Bias was evaluated with Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Meta-analysis with the overall area under the Summary Receiver Operating Characteristic (SROC), sensitivity, and specificity as effect measures, was performed with R software.</div></div><div><h3>Results</h3><div>A total of 23 studies, comprising 3,629 patients, were eligible for synthesis. Eighteen models performed discharge-level classification, and 6 whole-EEG classification. For the IED-level classification, 3 models were validated in an external dataset with more than 50 patients and achieved a sensitivity of 84.9 % (95 % CI: 82.3–87.2) and a specificity of 68.7 % (95 % CI: 7.9–98.2). Five studies reported model performance using both internal validation (cross-validation) and external datasets. The meta-analysis revealed higher performance for internal validation, with 90.4 % sensitivity and 99.6 % specificity, compared to external validation, which showed 78.1 % sensitivity and 80.1 % specificity.</div></div><div><h3>Conclusion</h3><div>Meta-analysis showed higher performance for models validated with resampling methods compared to those using external datasets. Only a minority of models use more robust validation techniques, which often leads to overfitting.</div></div>","PeriodicalId":49552,"journal":{"name":"Seizure-European Journal of Epilepsy","volume":"122 ","pages":"Pages 80-86"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seizure-European Journal of Epilepsy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105913112400267X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are an important biomarker for epilepsy. Currently, the gold standard for IED detection is the visual analysis performed by experts. However, this process is expert-biased, and time-consuming. Developing fast, accurate, and robust detection methods for IEDs based on EEG may facilitate epilepsy diagnosis. We aim to assess the performance of deep learning (DL) and classic machine learning (ML) algorithms in classifying EEG segments into IED and non-IED categories, as well as distinguishing whether the entire EEG contains IED or not.
Methods
We systematically searched PubMed, Embase, and Web of Science following PRISMA guidelines. We excluded studies that only performed the detection of IEDs instead of binary segment classification. Risk of Bias was evaluated with Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Meta-analysis with the overall area under the Summary Receiver Operating Characteristic (SROC), sensitivity, and specificity as effect measures, was performed with R software.
Results
A total of 23 studies, comprising 3,629 patients, were eligible for synthesis. Eighteen models performed discharge-level classification, and 6 whole-EEG classification. For the IED-level classification, 3 models were validated in an external dataset with more than 50 patients and achieved a sensitivity of 84.9 % (95 % CI: 82.3–87.2) and a specificity of 68.7 % (95 % CI: 7.9–98.2). Five studies reported model performance using both internal validation (cross-validation) and external datasets. The meta-analysis revealed higher performance for internal validation, with 90.4 % sensitivity and 99.6 % specificity, compared to external validation, which showed 78.1 % sensitivity and 80.1 % specificity.
Conclusion
Meta-analysis showed higher performance for models validated with resampling methods compared to those using external datasets. Only a minority of models use more robust validation techniques, which often leads to overfitting.
期刊介绍:
Seizure - European Journal of Epilepsy is an international journal owned by Epilepsy Action (the largest member led epilepsy organisation in the UK). It provides a forum for papers on all topics related to epilepsy and seizure disorders.