Switched CMOS current source compared to enhanced Howland circuit for bio-impedance applications.

Q3 Biochemistry, Genetics and Molecular Biology
Journal of Electrical Bioimpedance Pub Date : 2024-10-05 eCollection Date: 2024-01-01 DOI:10.2478/joeb-2024-0017
Pablo Dutra da Silva, Pedro Bertemes Filho
{"title":"Switched CMOS current source compared to enhanced Howland circuit for bio-impedance applications.","authors":"Pablo Dutra da Silva, Pedro Bertemes Filho","doi":"10.2478/joeb-2024-0017","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-impedance Spectroscopy (BIS) is a technique that allows tissue analysis to diagnose a variety of diseases, such as medical imaging, cancer diagnosis, muscle fatigue detection, glucose measurement, and others under research. The development of CMOS integrated circuit front-ends for bioimpedance analysis is required by the increasing use of wearable devices in the healthcare field, as they offer key features for battery-powered wearable devices. These features include high miniaturization, low power consumption, and low voltage power supply. A key circuit in BIS systems is the current source, and one of the most common topology is the Enhanced Howland Current Source (EHCS). EHCS is also used when the current driver is driven by a pseudo-random signal like discrete interval binary sequences (DIBS), which, due to its broadband nature, requires high performance operational amplifiers. These facts lead to the need for a current source more compatible with DIBS signals, ultra-low power supply, standard CMOS integrated circuit, output current amplitude independent of input voltage amplitude, high output impedance, high load capability, high output voltage swing, and the possibility of tetra-polar BIS analysis, that is a pseudotetra-polar in the case of EHCS. The objective of this work is to evaluate the performance of the Switching CMOS Current Source (SCMOSCS) over EHCS using a Cole-skin model as a load using SPICE simulations (DC and AC sweeps and transient analysis). The SCMOSCS demonstrated an output impedance of more than 20 <i>M</i>Ω, a ± 2.5 <i>V</i> output voltage swing from a +3.3 V supply, a 275 <i>μA</i> current consumption, and a 10 <i>k</i>Ω load capacity. These results contrast with the + 1.5 V output voltage swing, the 3 <i>k</i>Ω load capacity, and the 4.9 <i>mA</i> current of the EHCS case.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"15 1","pages":"145-153"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2024-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-impedance Spectroscopy (BIS) is a technique that allows tissue analysis to diagnose a variety of diseases, such as medical imaging, cancer diagnosis, muscle fatigue detection, glucose measurement, and others under research. The development of CMOS integrated circuit front-ends for bioimpedance analysis is required by the increasing use of wearable devices in the healthcare field, as they offer key features for battery-powered wearable devices. These features include high miniaturization, low power consumption, and low voltage power supply. A key circuit in BIS systems is the current source, and one of the most common topology is the Enhanced Howland Current Source (EHCS). EHCS is also used when the current driver is driven by a pseudo-random signal like discrete interval binary sequences (DIBS), which, due to its broadband nature, requires high performance operational amplifiers. These facts lead to the need for a current source more compatible with DIBS signals, ultra-low power supply, standard CMOS integrated circuit, output current amplitude independent of input voltage amplitude, high output impedance, high load capability, high output voltage swing, and the possibility of tetra-polar BIS analysis, that is a pseudotetra-polar in the case of EHCS. The objective of this work is to evaluate the performance of the Switching CMOS Current Source (SCMOSCS) over EHCS using a Cole-skin model as a load using SPICE simulations (DC and AC sweeps and transient analysis). The SCMOSCS demonstrated an output impedance of more than 20 MΩ, a ± 2.5 V output voltage swing from a +3.3 V supply, a 275 μA current consumption, and a 10 kΩ load capacity. These results contrast with the + 1.5 V output voltage swing, the 3 kΩ load capacity, and the 4.9 mA current of the EHCS case.

用于生物阻抗应用的开关式 CMOS 电流源与增强型 Howland 电路的比较。
生物阻抗光谱学(BIS)是一种可通过组织分析诊断多种疾病的技术,如医学成像、癌症诊断、肌肉疲劳检测、血糖测量和其他正在研究的技术。随着可穿戴设备在医疗保健领域的应用日益广泛,需要开发用于生物阻抗分析的 CMOS 集成电路前端,因为它们为电池供电的可穿戴设备提供了关键功能。这些特性包括高度微型化、低功耗和低电压供电。BIS 系统中的一个关键电路是电流源,最常见的拓扑结构之一是增强型豪兰电流源 (EHCS)。当电流驱动器由离散间隔二进制序列 (DIBS) 等伪随机信号驱动时,也会使用 EHCS,由于其宽带特性,需要高性能的运算放大器。这些事实导致需要一种与 DIBS 信号更兼容的电流源、超低功耗电源、标准 CMOS 集成电路、输出电流振幅与输入电压振幅无关、高输出阻抗、高负载能力、高输出电压摆幅,以及四极性 BIS 分析的可能性,即在 EHCS 情况下的伪四极性。这项工作的目的是利用 SPICE 仿真(直流和交流扫描以及瞬态分析),以 Cole-skin 模型为负载,评估开关 CMOS 电流源 (SCMOSCS) 相对于 EHCS 的性能。SCMOSCS 的输出阻抗超过 20 MΩ,+3.3 V 电源输出电压摆幅为± 2.5 V,电流消耗为 275 μA,负载能力为 10 kΩ。这些结果与 EHCS 的 + 1.5 V 输出电压摆幅、3 kΩ 负载容量和 4.9 mA 电流形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信