Unconventional phonon blockade effect in array of three coupled weakly nonlinear nanomechanical resonators.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bhaskar Kumar, Prabhu Rajagopal
{"title":"Unconventional phonon blockade effect in array of three coupled weakly nonlinear nanomechanical resonators.","authors":"Bhaskar Kumar, Prabhu Rajagopal","doi":"10.1038/s41598-024-73662-8","DOIUrl":null,"url":null,"abstract":"<p><p>Phonon antibunching, a phenomenon arising from the quantum statistics of mechanical vibrations, has attracted significant attention due to its potential applications in quantum information processing, sensing, and energy harvesting. Here, we present a comprehensive investigation of phonon antibunching in a system consisting of three weakly nonlinear coupled nanomechanical resonators. We analytically derive and study the antibunching behavior of phonons in the proposed system and bring insight into the underlying mechanisms. The optimal phonon blockade results from destructive quantum interference due to distinct two-phonon excitation pathways. Due to this quantum interference, these unconventional phonon blockade systems can achieve antibunched statistics even in weakly nonlinear regimes, in contrast to conventional phonon blockade systems that require strong nonlinearity. We show that with the inclusion of an additional resonator, there are multiple additional two-phonon excitation pathways compared to two resonator cases, which results in stronger phonon antibunching and supports single phonon for longer duration. These findings are interesting for practical phononics using coupled-resonator systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"23258"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-73662-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phonon antibunching, a phenomenon arising from the quantum statistics of mechanical vibrations, has attracted significant attention due to its potential applications in quantum information processing, sensing, and energy harvesting. Here, we present a comprehensive investigation of phonon antibunching in a system consisting of three weakly nonlinear coupled nanomechanical resonators. We analytically derive and study the antibunching behavior of phonons in the proposed system and bring insight into the underlying mechanisms. The optimal phonon blockade results from destructive quantum interference due to distinct two-phonon excitation pathways. Due to this quantum interference, these unconventional phonon blockade systems can achieve antibunched statistics even in weakly nonlinear regimes, in contrast to conventional phonon blockade systems that require strong nonlinearity. We show that with the inclusion of an additional resonator, there are multiple additional two-phonon excitation pathways compared to two resonator cases, which results in stronger phonon antibunching and supports single phonon for longer duration. These findings are interesting for practical phononics using coupled-resonator systems.

Abstract Image

Abstract Image

Abstract Image

三耦合弱非线性纳米机械谐振器阵列中的非常规声子阻滞效应。
声子反冲是由机械振动的量子统计产生的一种现象,由于其在量子信息处理、传感和能量收集方面的潜在应用而备受关注。在这里,我们对由三个弱非线性耦合纳米机械谐振器组成的系统中的声子反冲现象进行了全面研究。我们分析推导并研究了拟议系统中的声子反捆绑行为,并深入探讨了其潜在机制。最佳的声子阻塞产生于不同的双声子激发途径所导致的破坏性量子干涉。由于这种量子干扰,这些非常规声子封锁系统即使在弱非线性状态下也能实现反捆绑统计,这与需要强非线性的传统声子封锁系统截然不同。我们的研究表明,与两个谐振器的情况相比,加入一个额外的谐振器后,会有多个额外的双声子激发途径,从而产生更强的声子反捆绑,并支持单声子持续更长的时间。这些发现对使用耦合谐振器系统的实际声子学很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信