Metabolic modelling reveals distinct roles of sugars and carboxylic acids in stomatal opening and uncovers unexpected carbon fluxes.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2024-10-05 DOI:10.1093/plcell/koae252
Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, J Lee Sweetlove, Nadine Töpfer
{"title":"Metabolic modelling reveals distinct roles of sugars and carboxylic acids in stomatal opening and uncovers unexpected carbon fluxes.","authors":"Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, J Lee Sweetlove, Nadine Töpfer","doi":"10.1093/plcell/koae252","DOIUrl":null,"url":null,"abstract":"<p><p>Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose couldalso accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolised in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae252","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose couldalso accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolised in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.

代谢模型揭示了糖和羧酸在气孔开放中的不同作用,并发现了意想不到的碳通量。
保卫细胞的新陈代谢对气孔动力学至关重要,但实验的局限性和新陈代谢网络的灵活性阻碍了对其作用的全面了解。为了应对这一挑战,我们构建了一个时间分辨的护卫细胞新陈代谢化学计量模型,该模型考虑了能量和渗透溶质的需求,并与叶肉结合在一起。该模型解决了淀粉、糖类和苹果酸盐在保卫细胞代谢中的不同作用,并揭示了中央代谢中几种意想不到的通量模式。在蓝光介导的气孔开放过程中,淀粉分解是产生渗透溶质的最有效方式,糖酵解的下调使淀粉衍生的葡萄糖作为细胞膜渗透溶质积累。麦芽糖也可以作为细胞膜渗透质积累,尽管这使得代谢系统的效率略低。据预测,气孔打开所需的代谢能不依赖于淀粉,而是利用夜间积累的柠檬酸,在三羧酸循环中代谢成苹果酸,为线粒体合成 ATP 提供还原力。在白光介导的气孔打开过程中,苹果酸将还原当量从保卫细胞的光合作用转移到线粒体,以产生 ATP。根据保卫细胞光合作用的能力,糖酵解在白天的通量很小,但在夜间对能量代谢至关重要。总之,我们的分析证实了拟南芥保卫细胞研究的最新发现,通过强调保卫细胞代谢的灵活性解决了相互矛盾的观察结果,并提出了新的代谢通量模式供进一步实验测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信