Effect of neutron beam properties on dose distributions in a water phantom for boron neutron capture therapy.

IF 1.9 4区 医学 Q2 BIOLOGY
Akihisa Ishikawa, Hiroki Tanaka, Satoshi Nakamura, Hiroaki Kumada, Yoshinori Sakurai, Kenichi Watanabe, Sachiko Yoshihashi, Yuki Tanagami, Akira Uritani, Yoshiaki Kiyanagi
{"title":"Effect of neutron beam properties on dose distributions in a water phantom for boron neutron capture therapy.","authors":"Akihisa Ishikawa, Hiroki Tanaka, Satoshi Nakamura, Hiroaki Kumada, Yoshinori Sakurai, Kenichi Watanabe, Sachiko Yoshihashi, Yuki Tanagami, Akira Uritani, Yoshiaki Kiyanagi","doi":"10.1093/jrr/rrae076","DOIUrl":null,"url":null,"abstract":"<p><p>From the viewpoints of the advantage depths (ADs), peak tumor dose and skin dose, we evaluated the effect on the dose distribution of neutron beam properties, namely the ratio between thermal and epithermal neutron fluxes (thermal/epithermal ratio), fast neutron component and γ-ray component. Several parameter surveys were conducted with respect to the beam properties of neutron sources for boron neutron capture therapy assuming boronophenylalanine as the boron agent using our dose calculation tool, called SiDE. The ADs decreased by 3% at a thermal/epithermal ratio of 20-30% compared with the current recommendation of 5%. The skin dose increased with the increasing thermal/epithermal ratio, reaching a restricted value of 14 Gyeq at a thermal/epithermal ratio of 48%. The fast neutron component was modified using two different models, namely the 'linear model', in which the fast neutron intensity decreases log-linearly with the increasing neutron energy, and the 'moderator thickness (MT) model', in which the fast neutron component is varied by adjusting the MT in a virtual beam shaping assembly. Although a higher fast neutron component indicated a higher skin dose, the increment was <10% at a fast neutron component of <1 × 10-12 Gy cm2 for both models. Furthermore, in the MT model, the epithermal neutron intensity at a fast neutron component of 6.8 × 10-13 Gy cm2 was 41% higher compared with that of 2 × 10-13 Gy cm2. The γ-ray component also caused no significant disadvantages up to several times larger compared with the current recommendation.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

From the viewpoints of the advantage depths (ADs), peak tumor dose and skin dose, we evaluated the effect on the dose distribution of neutron beam properties, namely the ratio between thermal and epithermal neutron fluxes (thermal/epithermal ratio), fast neutron component and γ-ray component. Several parameter surveys were conducted with respect to the beam properties of neutron sources for boron neutron capture therapy assuming boronophenylalanine as the boron agent using our dose calculation tool, called SiDE. The ADs decreased by 3% at a thermal/epithermal ratio of 20-30% compared with the current recommendation of 5%. The skin dose increased with the increasing thermal/epithermal ratio, reaching a restricted value of 14 Gyeq at a thermal/epithermal ratio of 48%. The fast neutron component was modified using two different models, namely the 'linear model', in which the fast neutron intensity decreases log-linearly with the increasing neutron energy, and the 'moderator thickness (MT) model', in which the fast neutron component is varied by adjusting the MT in a virtual beam shaping assembly. Although a higher fast neutron component indicated a higher skin dose, the increment was <10% at a fast neutron component of <1 × 10-12 Gy cm2 for both models. Furthermore, in the MT model, the epithermal neutron intensity at a fast neutron component of 6.8 × 10-13 Gy cm2 was 41% higher compared with that of 2 × 10-13 Gy cm2. The γ-ray component also caused no significant disadvantages up to several times larger compared with the current recommendation.

中子束特性对硼中子俘获疗法水模型中剂量分布的影响。
从优势深度(ADs)、肿瘤峰值剂量和皮肤剂量的角度,我们评估了中子束特性对剂量分布的影响,即热中子通量和表热中子通量之比(热/表比)、快中子分量和γ射线分量。我们使用名为 SiDE 的剂量计算工具,对用于硼中子俘获治疗的中子源的射束特性进行了多项参数调查,并假设硼苯丙氨酸为硼剂。与目前建议的5%相比,当热/外热比为20%-30%时,ADs降低了3%。皮肤剂量随着热/外热比的增加而增加,在热/外热比为 48% 时达到 14 Gyeq 的限制值。快中子分量采用两种不同的模型进行修正,即 "线性模型 "和 "慢化剂厚度(MT)模型"。在 "线性模型 "中,快中子强度随中子能量的增加而呈对数线性下降;在 "慢化剂厚度(MT)模型 "中,快中子分量通过调整虚拟光束整形组件中的慢化剂厚度而变化。虽然快中子分量越大,皮肤剂量越高,但增量为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
86
审稿时长
4-8 weeks
期刊介绍: The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO). Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal. Articles considered fall into two broad categories: Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable. Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences. Please be advised that JRR does not accept any papers of pure physics or chemistry. The journal is bimonthly, and is edited and published by the JRR Editorial Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信