Bastian Nießing, Yannik Breitkreuz, Andreas Elanzew, Marcelo A S de Toledo, Peter Vajs, Marina Nolden, Frederik Erkens, Paul Wanek, Si Wah Christina Au Yeung, Simone Haupt, Niels König, Michael Peitz, Robert H Schmitt, Martin Zenke, Oliver Brüstle
{"title":"Automated CRISPR/Cas9-based genome editing of human pluripotent stem cells using the StemCellFactory.","authors":"Bastian Nießing, Yannik Breitkreuz, Andreas Elanzew, Marcelo A S de Toledo, Peter Vajs, Marina Nolden, Frederik Erkens, Paul Wanek, Si Wah Christina Au Yeung, Simone Haupt, Niels König, Michael Peitz, Robert H Schmitt, Martin Zenke, Oliver Brüstle","doi":"10.3389/fbioe.2024.1459273","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas9 genome editing is a rapidly advancing technology that has the potential to accelerate research and development in a variety of fields. However, manual genome editing processes suffer from limitations in scalability, efficiency, and standardization. The implementation of automated systems for genome editing addresses these challenges, allowing researchers to cover the increasing need and perform large-scale studies for disease modeling, drug development, and personalized medicine. In this study, we developed an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. We implemented a 4D-Nucleofector with a 96-well shuttle device into the StemCellFactory, optimized several parameters for single cell culturing and established an automated workflow for CRISPR/Cas9-based genome editing. When validated with a variety of genetic backgrounds and target genes, the automated workflow showed genome editing efficiencies similar to manual methods, with indel rates of up to 98%. Monoclonal colony growth was achieved and monitored using the StemCellFactory-integrated CellCelector, which allowed the exclusion of colonies derived from multiple cells or growing too close to neighbouring colonies. In summary, we demonstrate the successful establishment of an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. The development of such a standardized and scalable automated CRISPR/Cas9 system represents an exciting new tool in genome editing, enhancing our ability to address a wide range of scientific questions in disease modeling, drug development and personalized medicine.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1459273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas9 genome editing is a rapidly advancing technology that has the potential to accelerate research and development in a variety of fields. However, manual genome editing processes suffer from limitations in scalability, efficiency, and standardization. The implementation of automated systems for genome editing addresses these challenges, allowing researchers to cover the increasing need and perform large-scale studies for disease modeling, drug development, and personalized medicine. In this study, we developed an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. We implemented a 4D-Nucleofector with a 96-well shuttle device into the StemCellFactory, optimized several parameters for single cell culturing and established an automated workflow for CRISPR/Cas9-based genome editing. When validated with a variety of genetic backgrounds and target genes, the automated workflow showed genome editing efficiencies similar to manual methods, with indel rates of up to 98%. Monoclonal colony growth was achieved and monitored using the StemCellFactory-integrated CellCelector, which allowed the exclusion of colonies derived from multiple cells or growing too close to neighbouring colonies. In summary, we demonstrate the successful establishment of an automated CRISPR/Cas9-based genome editing process on the StemCellFactory platform. The development of such a standardized and scalable automated CRISPR/Cas9 system represents an exciting new tool in genome editing, enhancing our ability to address a wide range of scientific questions in disease modeling, drug development and personalized medicine.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.