Valerie Dicenta-Baunach, Zoi Laspa, David Schaale, Manuel Sigle, Alp Bayrak, Tatsiana Castor, Thanigaimalai Pillaiyar, Stefan Laufer, Meinrad Paul Gawaz, Anne-Katrin Rohlfing
{"title":"ACKR3 agonism induces heterodimerization with chemokine receptor CXCR4 and attenuates platelet function.","authors":"Valerie Dicenta-Baunach, Zoi Laspa, David Schaale, Manuel Sigle, Alp Bayrak, Tatsiana Castor, Thanigaimalai Pillaiyar, Stefan Laufer, Meinrad Paul Gawaz, Anne-Katrin Rohlfing","doi":"10.1111/eci.14327","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Platelet receptors ACKR3 and CXCR4 play a crucial role in a variety of cardiovascular diseases. Like most chemokine receptors, CXCR4 is a G protein coupled receptor that induces platelet activation. In contrast, the atypical chemokine receptor 3 (ACKR3) lacks the ability to activate heterotrimeric G proteins and its activation leads to platelet inhibition and attenuates thrombus formation. In nucleated cells, heterodimerization of ACKR3 with CXCR4 regulates CXCL12-dependent signalling. The aim of our study was to investigate the formation of ACKR3/CXCR4 heterodimers in platelets and the subsequent consequences for platelet function.</p><p><strong>Methods and results: </strong>Using a proximity ligation assay (PLA, Duolink®) to screen for CXCR4/ACKR3 heterodimerization inducing compounds, we found that ACKR3 agonism but not conventional platelet agonists or endogen ligands lead to heterodimer formation. To further characterize the formation of ACKR3/CXCR4 heterodimers, we studied the CXCL12-dependent platelet activation via CXCR4. Both, CXCL12-dependent platelet aggregation and collagen-dependent ex vivo thrombus formation were significantly downregulated by ACKR3 agonism. Moreover, platelet intracellular calcium and Akt signalling were increased by CXCL12 and again suppressed by ACKR3-specific agonists. Previously, CXCL12 was shown to decrease platelet cAMP levels via CXCR4. Treatment with a specific ACKR3 agonist counteracted this CXCL12/CXCR4-dependent cAMP decrease.</p><p><strong>Conclusion: </strong>Our results reveal that the formation of platelet ACKR3/CXCR4 heterodimers is dependent on ACKR3 rather than CXCR4. Furthermore, ACKR3 agonism induced heterodimerization is associated with mitigating CXCL12/CXCR4-dependent platelet activation possibly by modulating CXCR4-dependent G protein signalling. Our results indicate possible ACKR3 agonist functions and reinforce the potential therapeutic applications of ACKR3 agonists.</p>","PeriodicalId":12013,"journal":{"name":"European Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/eci.14327","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Platelet receptors ACKR3 and CXCR4 play a crucial role in a variety of cardiovascular diseases. Like most chemokine receptors, CXCR4 is a G protein coupled receptor that induces platelet activation. In contrast, the atypical chemokine receptor 3 (ACKR3) lacks the ability to activate heterotrimeric G proteins and its activation leads to platelet inhibition and attenuates thrombus formation. In nucleated cells, heterodimerization of ACKR3 with CXCR4 regulates CXCL12-dependent signalling. The aim of our study was to investigate the formation of ACKR3/CXCR4 heterodimers in platelets and the subsequent consequences for platelet function.
Methods and results: Using a proximity ligation assay (PLA, Duolink®) to screen for CXCR4/ACKR3 heterodimerization inducing compounds, we found that ACKR3 agonism but not conventional platelet agonists or endogen ligands lead to heterodimer formation. To further characterize the formation of ACKR3/CXCR4 heterodimers, we studied the CXCL12-dependent platelet activation via CXCR4. Both, CXCL12-dependent platelet aggregation and collagen-dependent ex vivo thrombus formation were significantly downregulated by ACKR3 agonism. Moreover, platelet intracellular calcium and Akt signalling were increased by CXCL12 and again suppressed by ACKR3-specific agonists. Previously, CXCL12 was shown to decrease platelet cAMP levels via CXCR4. Treatment with a specific ACKR3 agonist counteracted this CXCL12/CXCR4-dependent cAMP decrease.
Conclusion: Our results reveal that the formation of platelet ACKR3/CXCR4 heterodimers is dependent on ACKR3 rather than CXCR4. Furthermore, ACKR3 agonism induced heterodimerization is associated with mitigating CXCL12/CXCR4-dependent platelet activation possibly by modulating CXCR4-dependent G protein signalling. Our results indicate possible ACKR3 agonist functions and reinforce the potential therapeutic applications of ACKR3 agonists.
期刊介绍:
EJCI considers any original contribution from the most sophisticated basic molecular sciences to applied clinical and translational research and evidence-based medicine across a broad range of subspecialties. The EJCI publishes reports of high-quality research that pertain to the genetic, molecular, cellular, or physiological basis of human biology and disease, as well as research that addresses prevalence, diagnosis, course, treatment, and prevention of disease. We are primarily interested in studies directly pertinent to humans, but submission of robust in vitro and animal work is also encouraged. Interdisciplinary work and research using innovative methods and combinations of laboratory, clinical, and epidemiological methodologies and techniques is of great interest to the journal. Several categories of manuscripts (for detailed description see below) are considered: editorials, original articles (also including randomized clinical trials, systematic reviews and meta-analyses), reviews (narrative reviews), opinion articles (including debates, perspectives and commentaries); and letters to the Editor.