{"title":"Enrichment of low-abundance osteopontin in bovine milk via reciprocating free-flow isoelectric focusing.","authors":"Ke-Er Chen, Youli Tian, Yiren Cao, Zixian Yu, Qiang Zhang, Weiwen Liu, Yishu Xing, Chengxi Cao, Zhishen Mu, Xu Xu","doi":"10.1002/elps.202400071","DOIUrl":null,"url":null,"abstract":"<p><p>Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.