{"title":"Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis.","authors":"Xiaoyi Xu, Hao Yang, Huarong Dong, Xiao Li, Qian Liu, Yan Feng","doi":"10.1186/s40643-024-00797-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn<sup>2+</sup> and Mg<sup>2+</sup> ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4-12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5'-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10-16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"94"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00797-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn2+ and Mg2+ ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4-12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5'-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10-16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology