Xiangyi Sun, Ruchao Long, Qiang Chen, Jian Feng, Yang Gao, Guangqi Zhu, Zhihua Yang
{"title":"miR-378a-3p Regulates the BMP2-Smad Pathway to Promote Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells.","authors":"Xiangyi Sun, Ruchao Long, Qiang Chen, Jian Feng, Yang Gao, Guangqi Zhu, Zhihua Yang","doi":"10.1007/s12013-024-01561-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01561-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.