{"title":"Organotin(IV) complexes of tridentate (ONO) hydrazone ligands: synthesis, spectral characterization, antituberculosis, antimicrobial, anti-inflammatory, molecular docking and cytotoxicity studies.","authors":"Ankit Boora, Jai Devi, Binesh Kumar, Bharti Taxak","doi":"10.1007/s10534-024-00644-8","DOIUrl":null,"url":null,"abstract":"<p><p>Infectious diseases have a significant impact in the historical trajectory of humanity, exerting profound influence on societies, driving advancements in medical science, and significantly impacting individuals on a worldwide scale. Consequently, this research endeavours to identify potent agents combatting tuberculosis, inflammation, and microbial deformities. The investigation focuses on hydrazones (1,2) endowed eight organotin(IV) complexes, where hydrazones were derived from 2-acetyl-1H-indene-1,3(2H)-dione and 2-phenoxypropanehydrazide/2-(2,4-dichlorophenoxy)propanehydrazide. All compounds underwent thorough characterization utilizing a variety of spectral and analytical techniques including, multinuclear NMR, FT-IR, HRMS, UV-Vis, SEM-EDAX, TGA, XRD, molar conductance measurements, establishing the pentacoordinated environment around tin(IV) ion with tridentate (ONO) mode of chelation of hydrazones. Powder XRD revealed the ligand's crystalline and complexes' semi-crystalline nature, while thermal analysis indicated two-step decomposition leaving tin oxide residue. In vitro evaluations utilize microplate alamar blue assay for assessing anti-tuberculosis activity, serial dilution technique for antimicrobial efficacy, and bovine serum albumin method for evaluating anti-inflammatory properties. The complexes exhibited higher biological activities than their respective ligands and the activity of the complexes follow the order: Ph<sub>2</sub>SnL<sup>1-2</sup> > Bu<sub>2</sub>SnL<sup>1-2</sup> > Et<sub>2</sub>SnL<sup>1-2</sup> > Me<sub>2</sub>SnL<sup>1-2</sup><sub>.</sub> Among them, phenyl complex (10) [Ph<sub>2</sub>SnL<sup>2</sup>] displays superior efficacy against TB dysfunction (MIC: 0.0180 ± 0.009 μmol/mL) and also demonstrates exceptional potency in combating inflammation (IC<sub>50</sub>: 7.27 ± 0.04 μM), and microbial (MIC: 0.0045 μmol/mL) infections, comparable to standard drugs. Additionally, cytotoxicity testing against vero cell line revealed decreased toxicity at lower concentrations, and attenuated by chelation. Phenyl complex (10) [Ph<sub>2</sub>SnL<sup>2</sup>] shows promising cytotoxicity at 3.12 µg/mL (19.29 ± 0.09%). Further, The diphenyltin(IV) complex (10), identified as the most effective against TB, shows stronger binding to key 3PTY protein residues (- 42.2 kJ/mol) compared to ligand (2) (- 33.4 kJ/mol), correlating with its superior anti-tuberculosis potency in biological assays. This comprehensive approach aims to actively contribute to ongoing initiatives addressing infectious diseases, thereby advancing global health and overall well-being.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00644-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infectious diseases have a significant impact in the historical trajectory of humanity, exerting profound influence on societies, driving advancements in medical science, and significantly impacting individuals on a worldwide scale. Consequently, this research endeavours to identify potent agents combatting tuberculosis, inflammation, and microbial deformities. The investigation focuses on hydrazones (1,2) endowed eight organotin(IV) complexes, where hydrazones were derived from 2-acetyl-1H-indene-1,3(2H)-dione and 2-phenoxypropanehydrazide/2-(2,4-dichlorophenoxy)propanehydrazide. All compounds underwent thorough characterization utilizing a variety of spectral and analytical techniques including, multinuclear NMR, FT-IR, HRMS, UV-Vis, SEM-EDAX, TGA, XRD, molar conductance measurements, establishing the pentacoordinated environment around tin(IV) ion with tridentate (ONO) mode of chelation of hydrazones. Powder XRD revealed the ligand's crystalline and complexes' semi-crystalline nature, while thermal analysis indicated two-step decomposition leaving tin oxide residue. In vitro evaluations utilize microplate alamar blue assay for assessing anti-tuberculosis activity, serial dilution technique for antimicrobial efficacy, and bovine serum albumin method for evaluating anti-inflammatory properties. The complexes exhibited higher biological activities than their respective ligands and the activity of the complexes follow the order: Ph2SnL1-2 > Bu2SnL1-2 > Et2SnL1-2 > Me2SnL1-2. Among them, phenyl complex (10) [Ph2SnL2] displays superior efficacy against TB dysfunction (MIC: 0.0180 ± 0.009 μmol/mL) and also demonstrates exceptional potency in combating inflammation (IC50: 7.27 ± 0.04 μM), and microbial (MIC: 0.0045 μmol/mL) infections, comparable to standard drugs. Additionally, cytotoxicity testing against vero cell line revealed decreased toxicity at lower concentrations, and attenuated by chelation. Phenyl complex (10) [Ph2SnL2] shows promising cytotoxicity at 3.12 µg/mL (19.29 ± 0.09%). Further, The diphenyltin(IV) complex (10), identified as the most effective against TB, shows stronger binding to key 3PTY protein residues (- 42.2 kJ/mol) compared to ligand (2) (- 33.4 kJ/mol), correlating with its superior anti-tuberculosis potency in biological assays. This comprehensive approach aims to actively contribute to ongoing initiatives addressing infectious diseases, thereby advancing global health and overall well-being.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.