Machine Learning-Aided Discovery of Low-Pt High Entropy Intermetallic Compounds for Electrochemical Oxygen Reduction Reaction.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2024-12-16 Epub Date: 2024-11-09 DOI:10.1002/anie.202411123
Longhai Zhang, Xu Zhang, Changsheng Chen, Jiaxi Zhang, Weiquan Tan, Zhihang Xu, Ziying Zhong, Li Du, Huiyu Song, Shijun Liao, Ye Zhu, Zhen Zhou, Zhiming Cui
{"title":"Machine Learning-Aided Discovery of Low-Pt High Entropy Intermetallic Compounds for Electrochemical Oxygen Reduction Reaction.","authors":"Longhai Zhang, Xu Zhang, Changsheng Chen, Jiaxi Zhang, Weiquan Tan, Zhihang Xu, Ziying Zhong, Li Du, Huiyu Song, Shijun Liao, Ye Zhu, Zhen Zhou, Zhiming Cui","doi":"10.1002/anie.202411123","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)<sub>3</sub>) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom<sup>-1</sup> for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu)<sub>3</sub> catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mg<sub>Pt</sub> <sup>-1</sup>) and specific activity (7.92 mA cm<sup>-2</sup>). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish diffussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202411123"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)3) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom-1 for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu)3 catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mgPt -1) and specific activity (7.92 mA cm-2). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish diffussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.

机器学习辅助发现用于电化学氧还原反应的低铂高熵金属间化合物。
推进阴极催化剂的设计,最大限度地提高铂的利用率并延长其使用寿命,已成为燃料电池领域的一项艰巨挑战。在本文中,我们通过高效的机器学习方法合理地设计了一种用于催化氧还原反应(ORR)的高熵金属间化合物(HEIC,Pt(FeCoNiCu)3),其中采用了晶体图卷积神经网络来加速多组分设计。基于第一原理计算生成的数据集,该模型可以达到很高的预测精度,表面应变的平均绝对误差为 0.003,形成能的平均绝对误差为 0.011 eV atom-1。此外,我们还确定了两个化学特征(原子尺寸差和混合焓)作为探索先进 ORR 催化剂的新描述因子。通过冷冻干燥-退火技术成功合成了小粒径的碳支撑铂(铁钴镍铜)3 催化剂,并表现出超高的质量活性(4.09 A mgPt-1)和比活性(7.92 mA cm-2)。同时,该催化剂还显著提高了电化学稳定性,这可归因于 HEIC 结构中的迟滞反冲效应。这项工作不仅为燃料电池阴极提供了一种前景广阔的低铂电催化剂,还为合理设计用于能量存储和转换设备的先进催化剂提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信