Wenli Ma, Jianyu Zhang, Jibo Zong, Hongyuan Ren, Deshuang Tu, Qinfeng Xu, Ben Zhong Tang, Hong Yan
{"title":"Luminescence Modulation in Boron-Cluster-Based Luminogens via Boron Isotope Effects.","authors":"Wenli Ma, Jianyu Zhang, Jibo Zong, Hongyuan Ren, Deshuang Tu, Qinfeng Xu, Ben Zhong Tang, Hong Yan","doi":"10.1002/anie.202410430","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98 % <sup>10</sup>B and 95 % <sup>11</sup>B, respectively, and observed distinct photophysical behaviors. Compared to the <sup>10</sup>B-enriched luminogens, the <sup>11</sup>B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a <sup>10</sup>B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202410430"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202410430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98 % 10B and 95 % 11B, respectively, and observed distinct photophysical behaviors. Compared to the 10B-enriched luminogens, the 11B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a 10B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.