{"title":"Asymmetrically Coordinated Cu Dual-Atom-Sites Enables Selective CO<sub>2</sub> Electroreduction to Ethanol.","authors":"Changli Chen, Zhiyi Sun, Gangzhi Qin, Bingchao Wang, Minggang Liu, Qingru Liang, Xinyu Li, Runzhuo Pang, Yingshu Guo, Yujing Li, Wenxing Chen","doi":"10.1002/adma.202409797","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C<sub>2+</sub> products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO<sub>2</sub>RR selectivity. Cu<sub>2</sub>-SNC catalyst with a uniquely asymmetrical coordinated CuN<sub>2</sub>-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu<sub>2</sub>-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO<sub>2</sub>RR to produce ethanol.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2409797"},"PeriodicalIF":27.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical reduction of CO2 (CO2RR) to value-added liquid fuels is a highly attractive solution for carbon-neutral recycling, especially for C2+ products. However, the selectivity control to preferable products is a great challenge due to the complex multi-electron proton transfer process. In this work, a series of Cu atomic dispersed catalysts are synthesized by regulating the coordination structures to optimize the CO2RR selectivity. Cu2-SNC catalyst with a uniquely asymmetrical coordinated CuN2-CuNS site shows high ethanol selective with the FE of 62.6% at -0.8 V versus RHE and 60.2% at 0.9 V versus RHE in H-Cell and Flow-Cell test, respectively. Besides, the nest-like structure of Cu2-SNC is beneficial to the mass transfer process and the selection of catalytic products. In situ experiments and theory calculations reveal the reaction mechanisms of such high selectivity of ethanol. The S atoms weaken the bonding ability of the adjacent Cu to the carbon atom, which accelerates the selection from *CHCOH to generate *CHCHOH, resulting in the high selectivity of ethanol. This work indicates a promising strategy in the rational design of asymmetrically coordinated single, dual, or tri-atom catalysts and provides a candidate material for CO2RR to produce ethanol.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.