Photo-driven CO2 conversion into cyclic carbonates

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yi Feng, Jianfeng Yao
{"title":"Photo-driven CO2 conversion into cyclic carbonates","authors":"Yi Feng, Jianfeng Yao","doi":"10.1016/j.seppur.2024.130027","DOIUrl":null,"url":null,"abstract":"Thermally driven catalytic CO<sub>2</sub> fixation into epoxides via cycloaddition reactions has been extensively studied not only as an appealing method of carbon capture and utilization (CCU) but also as a promising strategy to produce cyclic carbonates. However, inspired by photothermal/photocatalytic catalysis and the concept of green chemistry, solar energy has recently been utilized as a novel and effective substitute for external heating to drive this reaction with distinctive reaction pathways and superior catalytic performances. In this context, a review paper is presented here to provide a timely overview of the current development of photo-driven CO<sub>2</sub> cycloaddition and related catalysts, elaborate the role of light (mainly photothermal effect and photocatalytic effect), and highlight the challenges and future research directions so that more insightful research can be motivated in the future to promote the development of solar energy catalysis in CCU as well as green and economic cyclic carbonate production.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermally driven catalytic CO2 fixation into epoxides via cycloaddition reactions has been extensively studied not only as an appealing method of carbon capture and utilization (CCU) but also as a promising strategy to produce cyclic carbonates. However, inspired by photothermal/photocatalytic catalysis and the concept of green chemistry, solar energy has recently been utilized as a novel and effective substitute for external heating to drive this reaction with distinctive reaction pathways and superior catalytic performances. In this context, a review paper is presented here to provide a timely overview of the current development of photo-driven CO2 cycloaddition and related catalysts, elaborate the role of light (mainly photothermal effect and photocatalytic effect), and highlight the challenges and future research directions so that more insightful research can be motivated in the future to promote the development of solar energy catalysis in CCU as well as green and economic cyclic carbonate production.
光驱动二氧化碳转化为环状碳酸盐
通过环加成反应将二氧化碳固定在环氧化物中的热驱动催化反应已被广泛研究,它不仅是一种有吸引力的碳捕获和利用(CCU)方法,也是一种生产环状碳酸盐的有前途的策略。然而,受光热/光催化催化和绿色化学概念的启发,最近有人利用太阳能作为一种新颖而有效的外部加热替代物,以独特的反应途径和优异的催化性能来驱动这一反应。在此背景下,本文综述了光驱动 CO2 环加成反应及相关催化剂的发展现状,阐述了光的作用(主要是光热效应和光催化效应),并强调了面临的挑战和未来的研究方向,从而激励今后开展更深入的研究,推动太阳能催化在 CCU 以及绿色经济的环碳酸盐生产中的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信