Guannan Qian , Saravana Kuppan , Alessandro Gallo , Jigang Zhou , Zhao Liu , Yijin Liu
{"title":"From in-situ experimentation to in-line metrology: Advanced imaging characterization for battery research and manufacturing","authors":"Guannan Qian , Saravana Kuppan , Alessandro Gallo , Jigang Zhou , Zhao Liu , Yijin Liu","doi":"10.1016/j.ensm.2024.103819","DOIUrl":null,"url":null,"abstract":"<div><div>The continuous advancement of battery technology necessitates innovative approaches in both research and manufacturing to ensure improved performance, reliability, and safety. This article explores the critical role of advanced imaging characterization techniques, spanning from in-situ experimentation to in-line metrology, in the development and production of lithium-ion batteries. By integrating real-time imaging and diagnostic tools, researchers and manufacturers can gain unprecedented insights into the electrochemical processes, material behaviors, structural defects and their evolutions in commercial-grade batteries. This comprehensive characterization enables the optimization of material compositions, electrode designs, and manufacturing processes, ultimately enhancing the efficiency and longevity of batteries. The synergy between in-situ experimentation and in-line metrology provides a robust framework for addressing the complex challenges in battery research and manufacturing, paving the way for innovations that will meet the growing demands of energy storage systems.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103819"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous advancement of battery technology necessitates innovative approaches in both research and manufacturing to ensure improved performance, reliability, and safety. This article explores the critical role of advanced imaging characterization techniques, spanning from in-situ experimentation to in-line metrology, in the development and production of lithium-ion batteries. By integrating real-time imaging and diagnostic tools, researchers and manufacturers can gain unprecedented insights into the electrochemical processes, material behaviors, structural defects and their evolutions in commercial-grade batteries. This comprehensive characterization enables the optimization of material compositions, electrode designs, and manufacturing processes, ultimately enhancing the efficiency and longevity of batteries. The synergy between in-situ experimentation and in-line metrology provides a robust framework for addressing the complex challenges in battery research and manufacturing, paving the way for innovations that will meet the growing demands of energy storage systems.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.